скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Вычислительная система обработки данных в реальном времени

Курсовая работа: Вычислительная система обработки данных в реальном времени

Содержание

 

Введение

Техническии задание для разработки

Анализ исходных данных

Выбор элементной базы

Разработка программного обеспечения

Тест ПЗУ

Алгоритм вычисления функции

Разработка структурной схемы

Проектирование функциональной схемы

Оценка быстродействия системы

Список использованной литературы

Приложение. Листинг программы


Введение

Курсовая работа выполняется с целью закрепления знаний, полученных из курса "Организация ЭВМ и систем", а также, основываясь на ранее изученных дисциплинах таких, как "Информатика", "Языки программирования" и "Электротехника и электроника", помогает их лучшему восприятию.

Основными задачами работы является:

практическое овладение методикой проектирования вычислительной системы на основе современной элементной базы, технических средств вычислительной техники, а также теории организации ЭВМ и систем;

оценка параметров проектируемой системы и повышение качества проектирования;.

приобретение практических навыков оформления и выпуска конструкторской документации в соответствии с ГОСТ.


Техническии задание для разработки

В курсовом проекте проектируется вычислительная система, предназначенная для реализации заданного алгоритма обработки входного аналогового сигнала и структурно состоящая из устройств:

персональной ЭВМ (ПЭВМ) типа IBM PC/AT-386 и выше;

устройства ввода (УВ), связанного с ПЭВМ через стандартный интерфейс.

Устройство ввода состоит из блока цифровой программной обработки и интерфейсного блока, работающих одновременно и обеспечивающих обработку и ввод информации в ПЭВМ.

Разрабатываемая система должна функционировать в режиме реального времени, т.е. запаздывание потока результатов от потока входной информации должно быть ограничено.

Исходные данные для процесса проектирования описаны ниже:

Структуру блока цифровой обработки: однопроцессорная система на базе комплекта К1810 в минимальном режиме;

Вид функции, выполняемой блоком цифровой обработки: остаток от деления произведения двух последних принятых входных значений на предыдущее;

Тип синхронизации: с синхронизацией по готовности данных;

Тип стандартного интерфейса для связи УВ и ПЭВМ: параллельный порт.

Анализ исходных данных

Анализ задания позволяет сделать следующие предварительные выводы:

1. Максимальная разрядность интерфейса системной шины равна 16. Данное обстоятельство обуславливает выбрать разрядность входного и выходного слова 16 бит;

2. Так как задан комплект К1810 в минимальном режиме, то потребуется использовать следующие микросхемы: генератор тактовых импульсов К1810ГФ84, два буферных регистра К1810ИР82, два двунаправленных шинных формирователя К1810ВА86;

3. Цифровой сигнал 16-ти битовый, поэтому необходимо использовать два буферных регистра, каждый разрядностью 8 бит, необходимые для разделения входного сигнала на 16 разрядные слова. Если регистры не использовать, то большая часть данных будет потеряна;

4. Проанализировав функцию, ясно что в при ее выполнении можно обойтись внутренними регистрами микропроцессора, поэтому нет необходимости использовать ОЗУ. Вся программа хранится в ПЗУ;

5. В качестве параллельного порта будет использовать микросхему К580ВВ55, у которой 3 8-разрядных порта, для вывода данных будем использовать 2 из них, то есть обеспечим передачу слова;

6. В параллельном порте будет использовать бит 0 в порте С в качестве бита готовности данных, по которым ПЭВМ определит, что выходные данные поступили в порты А и В.

Анализ исходных данных позволяет выбрать элементы, назначение и описание выводов которых приведено в следующем пункте курсовой работы.


Выбор элементной базы

Микросхема К1810ВМ86

Микропроцессор К1810ВМ86 представляет собой однокристальный 16-битовый МП работающий в данной вычислительной системе в минимальном режиме. Этот модуль производит чтение ПЗУ, а также чтение и запись в порты ввода-вывода. Условное графическое обозначение МП К1810ВМ86 приведено на рис.2. Опишем его выводы, используемые при проектировании системы.

AD15-AD0 - мультиплексная двунаправленная шина адреса/данных, по которой с разделением во времени передаются адресная информация и данные;

- разрешение старшего байта, активный сигнал означает, что по старшей половине AD15-AD8 передаются 8 - битовые данные. Он защелкивается во внешнем регистре адреса и используется как дополнительный адресный выход, определяющий доступ к старшему банку памяти. Совместное использование  и младшей линии адреса А0 для дешифрации адресов позволяет осуществлять передачу слов или отдельных байтов по шине АD;

ALE - строб адреса (разрешение защелкивания адреса), выдается в начале каждого цикла шины и используется для записи адреса в регистр - защелку, т.е. для демультиплексирования шины AD;

- строб данных (разрешение передачи данных). Выдается в циклах чтения, записи и разрешения входа шинных формирователей;

 - чтение, идентифицирует выполнения цикла чтения из ЗУ или внешнего устройства (в зависимости от значения сигнала ). Указывает этим устройствам на необходимость выдачи данных на шину;

 - запись, указывает на выполнение цикла записи ЗУ или ВУ и сопровождает данные, выдаваемые микропроцессором на шину;

 - является признаком обращения к ЗУ (=1) или ВУ и используется для разделения адресного пространства памяти и ввода/вывода. =0 появляется только при выполнении команд ввода (IN) и вывода (OUT);

 - передача/прием данных, определяет направление передачи по шине AD: =1 - запись данных из ЗУ или ВУ в МП. Предназначен для управления шинными формирователями и действует на протяжении всего цикла шины, как и сигнал ;

READY - готовность, указывает на то, что адресуемое в данном цикле устройство готово к обмену данными. Если устройство не готово к взаимодействию с МП, оно выдает сигнал READY=0, и МП переходит в состояние ожидания. В этом случае между тактами Т3 и Т4 цикла шины появляется необходимое число тактов ожидания TW. После установки сигнала READY=1 МП выходит из состояния ожидания и возобновляет работу;

CLK - тактовая синхронизация (тактирование). Сигнал синхронизации от внешнего генератора тактовых импульсов, предназначен для синхронизации МП. Используется серия тактовых импульсов CLK с периодом повторения T, равным 200 - 500 нс.;

RESET - сброс, переводит МП в определенное начальное состояние, в котором сброшены сегментные регистры (кроме CS, все разряды которого устанавливаются в единичное состояние), указатель команд IP, все флаги, регистры очереди команд и все внутренние триггеры в устройстве управления. Сигнал RESET не влияет на состояние общих регистров, которые устанавливаются в начальное состояние программным путем. На время действия сигнала RESET все выходы, имеющие три состояния, становятся пассивными. Минимальная продолжительность сигнала RESET при первом включении МП составляет 50 мкс., а при повторном запуске - четыре такта синхронизации. После снятия сигнала RESET работа МП возобновляется из начального состояния;

 - минимальный/максимальный режим. Сигнал на этот входе определяет режимы работы МП: 1 - минимальный, 0 - максимальный. Используемый режим в работе минимальный, поэтому на него нужно подавать напряжение.


Микросхема К1810ИР82.

Буферный регистр представляет собой 8 - разрядный параллельный регистр с тристабильными выходами и используется для организации адресных защелок и портов ввода - ввода. Графическое обозначение приведено на рис.3. Опишем назначение выводов этой микросхемы.

DI7-DI0 - линии входных данных;

DO7-DO0 - линии выходных данных;

STB - вход стробирующего сигнала, при сигнале высокого уровня на нем состояние входных линий DI7-DI0 передается на выходные линии DO7-DO0. Защелкивание в информационных триггерах осуществляется при переходе сигнала STB от высокого уровня к низкому;

 - разрешение выдачи данных. При = 0 буфер отпирается, при = 1 он устанавливается в Z - состояние.


Микросхема К1810ВА86.

Шинный формирователь представляет 8 - разрядный параллельный приемопередатчик с тристабильными выходами и используется как буферное устройство шины данных в микропроцессорных системах. Графическое изображение приведено на рис.4. Опишем выводы микросхемы.

DI7-DI0 - вход/выход линий данных. В зависимости от состояния входа Т они могут быть входными, если на Т сигнал высокого уровня, и выходными, если на Т сигнал низкого уровня;

DО7-DО0 - вход/выход линий данных. Они являются входными, если на Т сигнал низкого уровня, и выходными, если на Т сигнал высокого уровня;

Т - вход управления направлением передачи. При Т=0 осуществляется передача от DO к DI, при Т=1 - от DI к DO;

 - вход разрешения передачи. При =0 снимается Z - состояние с выхода формирователя, выбранного по входу Т.


Микросхема К1810ГФ84.

Рис.4. Шинный формирователь

Генератор тактовых импульсов предназначен для управления ЦП К1810ВМ86 и периферийными устройствами. Графическое изображение микросхемы приведено на рис.5. Опишем используемые ее выводы.

Х1 и Х2 - выводы для подключения кварцевого резонатора;

 - вход для подключение RC - цепи, обеспечивающий автоматическое формирование сигнала сброса при включении источника питания;

Подпись: Рис.5. Генератор тактовых импульсов - вход используется для выбора задающего генератора. При =0 соответствует внутреннему генератору (кварцевый резонатор), а при =1 - внешнему генератору импульсов, подключаемый на вход ЕFI;

RDY1 - вход сигнала готовности от устройств, подключаемых к каналу системы;

- вход разрешения адресации для сигнала готовности RDY1;

СLK - выход тактовых импульсов, их частота равна 5Мгц и образуется делением частоты задающего генератора на 3 (его частота 15Мгц);

READY - выход сигнала готовности, синхронизированный с задним фронтом сигнала CLK. Он позволяет обеспечить сопряжение во времени работы МП с работой внешних устройств, имеющих меньшее быстродействие;

RESET - выход сигнала сброса, синхронизированного с задним фронтом сигнала СLK. После поступления сигнала RESET МП прекращает работу и остается в режиме ожидания до окончания этого импульса. Затем начинается процесс инициализации МП, который длится 10 тактов.

Микросхема К580ВВ55.

БИС параллельного интерфейса предназначена для организации ввода/вывода параллельной информации различного формата. Структурная схема микросхемы приведена на Рис.6. Опишем используемые ее выводы.

D7-D0 - вход/выход данных;

 - чтение. Низкий уровень сигнала разрешает считывание информации из регистра, адресуемого по входам А0, А1 на шину D7. D0;

 - запись. Низкий уровень сигнала разрешает запись информации с шины D7. D0 в порт микросхемы, адресуемый по входам А0 и А1;

A0 и A1 - входы для адресации внутренних регистров.00 - порт А, 01 - порт В, 10 - порт С, 11 - порт управляющего слова, которое устанавливает работу микросхемы в один из трех режимов;

 - выбор микросхемы, низкий уровень подаваемого сигнала подключает ее к системной шине;

RS - сброс, высокий уровень сигнала обнуляет регистр управляющего слова и устанавливает все порты в режим ввода;

РА7-РА0 - вход/выход канала А;

РВ7-РВ0 - вход/выход канала В;

РС7-РС0 - вход/выход канала С.

Микросхема КР556РТ17.

Рис.6. Параллельный порт

ППЗУ представляет собой микросхему, предназначенную для хранения программы, которую пользователь может самостоятельно записать в нее. Операция программирования заключается в разрушении плавких перемычек на поверхности кристалла импульсами тока. Матрица до программирования, то есть в исходном состоянии, содержит однородный массив проводящих перемычек, соединяющих строки и столбцы во всех точках их пересечений. Программу в ППЗУ мы записывать не будет, предполагаем, что она уже находится там. Эта микросхема содержит 512 байт, а время выборки адреса 50нс, что на много меньше 200нс (время одного такта). Микросхема представлена на рис.7. Опишем используемые выводы.

А0-А8 - входы, по которым выбирается адрес в микросхеме ППЗУ;

DО0-DО7 - выходы, по которым передаются данные, содержащиеся в заданной ячейке памяти;

СS1, CS2,  и  - выводы выбора микросхемы, которые свидетельствует и одновременно и о считывании информации из нее. Каждый из них должен иметь соответствующее активное состояние, то есть CS1=CS2=1 и ==0. Нарушение этого условия хотя бы для одного из входов исключает доступ к накопителю для считывания. В этом случае микросхема будет находится в состоянии хранения, в котором выходы принимают Z - состояние.

Разработка программного обеспечения

Программа, находящаяся в ПЗУ, состоит из следующих блоков: непосредственное тестирование ПЗУ, обработка заданной функции и программирование параллельного порта. Блок - схема программы представлена на рисунке 8. Далее более детально будут рассмотрен каждый из блоков.


Рис.7. Программируемое ПЗУ



Тест ПЗУ

Тестирование ПЗУ заключается в суммировании содержимого всех мнемокодов программы, иными словами значений, находящихся по адреса ПЗУ. Каждый адрес содержит 16 - разрядный код, который соответствует определенной команде процессора. Вначале устанавливается начальный адрес кода программы. Перебор всех адресов делается в цикле, в котором проверяется достигнут ли адрес последний ячейки памяти, если это не так, то цикл вновь возобновляется. В противном случае, если достигнута последняя ячейка памяти, полученный результат суммы сравнивается со значением находящимся в определенном адресе ПЗУ за пределами основной программы. Это число должно быть получено ранее, путем ручного подсчета или же самой программой, которая тестирует ПЗУ. Это производится несколько раз для правильности результата, так как от него в дальнейшем будет зависеть: программа продолжит свое выполнение или же перейдет на участок, в которой будет находиться команда останова. Если тестирование ПЗУ закончилось не успешно, то до останова микропроцессора, он посылает сигнал в порт вывода - параллельный порт, в котором устанавливает значение, свидетельствующее об ошибки.

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.