скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Вероятностные процессы и математическая статистика в автоматизированных системах

Курсовая работа: Вероятностные процессы и математическая статистика в автоматизированных системах

Министерство образования и науки Украины

Кафедра КИТ

“ВЕРОЯТНОСТНЫЕ ПРОЦЕССЫ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА В АВТОМАТИЗИРОВАННЫХ СИСТЕМАХ”

2008


РЕФЕРАТ

Пояснительная записка к расчетно-графической работе: 29 стр., 9 рис., 1 прил., 5 источников.

Объект исследования – оптимальный предел прочности алюминиевых деформируемых сплавов при испытании на растяжение.

Метод исследования – применение математико-статистических методов в автоматизированных системах, реализация программ статистической обработки эксперимента на ЭВМ.

Многие детали и конструкции испытывают нагрузки на растяжение. При чем эти нагрузки часто являются основным фактором, влияющим на выход из строя деталей и конструкций. Поэтому очень важной и актуальной является задача нахождения оптимального состава материала, в течение длительного времени испытующего нагрузки на растяжение.

ДЕФОРМИРУЕМЫЙ АЛЮМИНИЕВЫЙ СПЛАВ, ЛИТИЙ, ТЕМПЕРАТУРА СТАРЕНИЯ, ВРЕМЯ СТАРЕНИЯ, МНОГОФАКТОРНЫЙ ЭКСПЕРИМЕНТ.


СОДЕРЖАНИЕ

Введение

1 Постановка задачи

2 Этапы планирования и статической обработки результатов эксперимента для построения модели 2-го порядка

2.1 Построение модели плана II порядка

2.2 Кодирование факторов

2.3 Составление план – матрицы

2.4 Проверка воспроизводимости опытов

2.5 Расчет коэффициентов регрессии

2.6 Определение значимости коэффициентов

2.7 Проверка адекватности модели

3 Выбор и описание метода условной оптимизации

3.1 Выбор метода условной оптимизации

3.2 Описание метода условной оптимизации (Фиако-МакКормика)

4 Описание программы

4.1 Общие сведения

4.2 Функциональное назначение

4.3 Описание логической структуры программы

4.4 Используемые технические средства

4.5 Вызов и загрузка

4.6 Входные данные

4.7 Выходные данные

5 Результаты обработки данных эксперимента

6 Графики зависимости отклика

7 Кривые равного выхода

Заключение

Список использованных источников

Приложение


Введение

Развитие современной техники связано с созданием новых и постоянным совершенствованием существующих технологических процессов. Основой их разработки и оптимизации является эксперимент. Заметное повышение эффективности экспериментальных исследований и инженерных разработок достигается использованием математических методов планирования экспериментов. Использование математико-статистических методов при постановке задач. В процессе экспериментирования и при обработке полученных данных существенно сокращает сроки решения, снижает затраты на исследования и повышает качество полученных результатов.

Встречающиеся на практике реальные задачи весьма разнообразны. Достаточно грубо их можно разделить на три основных задачи:

1       Выявление количественных зависимостей между параметрами процесса – задачи описания;

2       Определение оптимальных условий протекания процесса – экстремальные задачи;

3       Выбор оптимального состава многокомпонентных смесей.

Часто, приступая к изучению какого-либо процесса экспериментатор не имеет исчерпывающих сведений о механизме процесса. Можно только указать параметры определяющие условия протекания процесса, и, возможно требования к его результатам. Поставленная проблема является задачей кибернетики. Действительно, если считать кибернетику «наукой, изучающей системы любой природы, способные воспринимать, хранить и перерабатывать информацию для целей оптимального управления» [1], то такую систему можно представить в виде черного ящика.

Черный ящик объект исследования, имеющий (k+p) входов и m выходов.



X – управляемые параметры, Z неуправляемые параметры.

Зависимость между выходными параметрами (откликом) и входными параметрами (факторами) называется функцией отклика.

Математическая запись функции отклика представлена в виде формулы (1):

                           (1)

Этому уравнению в многомерном пространстве соответствует гипперповерхность, которая называется поверхностью отклика, а само пространство – факторным пространством.

Эксперимент можно проводить по разному. В случае, когда исследователь наблюдает за каким-то неуправляемым процессом, не вмешиваясь в него, или выбирает экспериментальные точки интуитивно, на основании каких-то привходящих обстоятельств, эксперимент считают пассивным. В настоящее время пассивный эксперимент считается неэффективным.

Гораздо более продуктивно проводится эксперимент, когда исследователь применяет статистические методы на всех этапах исследования, и, прежде всего, перед постановкой опытов, разрабатывая схему эксперимента, а также в процессе экспериментирования, при обработке результатов и после эксперимента, принимая решение о дальнейших действиях. Такой эксперимент считают активным, и он предполагает планирование эксперимента.

Под планированием эксперимента понимают процедуру выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью. Основные преимущества активного эксперимента связаны с тем, что он позволяет:

1      Минимизировать общее число опытов;

2      Выбирать четкие логически обоснованные процедуры, последовательно выполняемые экспериментатором при проведении исследования;

3      Использовать математический аппарат, формализующий многие действия экспериментатора;

4      Одновременно варьировать всеми переменными и оптимально использовать факторное пространство;

5      Организовать эксперимент таким образом, чтобы выполнялись многие исходные предпосылки регрессионного анализа;

6      Получать математические модели, имеющие лучшие в некотором смысле свойства по сравнению с моделями, построенными из пассивного эксперимента;

7      Рандомизировать условия опытов, то есть многочисленные мешающие факторы превратить в случайные величины;

8      Оценивать элемент неопределенности, связанный с экспериментом, что дает возможность сопоставлять результаты, полученные разными исследователями [1].

Целью данной работы является освоение анализа плановых экспериментов и анализ данных, полученных при выполнении этих экспериментов.


1. Постановка задачи

Изучали механические свойства одного из алюминиевых деформируемых сплавов в зависимости от содержания в нем лития Х1 (основной уровень 1%, интервал варьирования 0,5%), температуры старения Х2 (основной уровень 175 гр.С, интервал варьирования 25 гр.С) и времени старения Х3 (основной уровень 4 ч., интервал варьирования 2 ч.). В качестве отклика выбран предел прочности сплавов, определяющийся при испытании на растяжение (Y, кгс/кв.мм).

Задание на расчетно-графическую работу:

1)       Найти уравнение регрессии 2-го порядка и выполнить статистический анализ модели.

2)       Исследовать модель 2-го порядка на выпуклость и вогнутость методами дифференциального исчисления.

3)       Определить тип поверхности отклика.

4)       Построить графики зависимости отклика от каждого из факторов Y=f(Xi) при фиксированных значениях остальных факторов (каждый рисунок должен содержать 3-4 кривые).

5)       Применяя один из методов оптимизации, найти в исследованной области оптимальные сочетания факторов, обеспечивающие максимальное и минимальное значения отклика.

6)       Построить двумерные сечения поверхности отклика, соответствующие пересечению поверхности с плоскостями Xi=Ximax. Для этого в уравнение регрессии необходимо подставить значение этого фактора, и по полученным двухфакторным уравнениям рассчитать, а потом построить изолинии поверхности отклика (кривые равного выхода).

7)       Определить типы кривых равного выхода.

8)       Используя двумерные сечения поверхности, выполнить анализ влияния факторов в изученных интервалах их изменения на функцию отклика.


2. Этапы планирования и статической обработки результатов эксперимента для построения модели 2-го порядка

2.1 Построение модели плана II порядка

Для построения плана II порядка можно использовать следующую модель:

                                                    (2)

Для этого необходимо провести эксперимент так, чтобы каждый фактор варьировался на трех уровнях. Простейшим решением этой задачи является план типа 3k. Реализация этого плана для k>3 требует большого числа опытов.

Для построения модели второго порядка обычно используют ортогональный план первого порядка в качестве ядра, на котором достраивается план второго порядка, поэтому такие планы называются композиционными и соответствуют шаговой идее построения планов.

Для удобства работы с приведенной моделью II порядка, с помощью обозначений (3) преобразуем ее к виду (2’):

(3)

                                                                                        (2’)

Задача заключается в том, чтобы по результатам наблюдений определить значения коэффициентов bi, дисперсии и доверительные границы для них, а также определить их значимость.

Согласно МНК, для нахождения коэффициентов bi, необходимо минимизировать функцию:

                                                (4)

где N – количество опытов;

xui –значение i-й переменной в u-м опыте;

yu – значение экспериментальных y в u-м опыте;

Из условия минимизации функции ss, можно получить систему нормальных уравнений МНК:

                               (5)

Представив все результаты в матричной форме, получим:

, , ,                                               (6)

где    X – матрица условий эксперимента; Y – матрица результатов опытов; B – матрица коэффициентов.

Умножив транспонированную матрицу X на матрицу X, получим матрицу системы нормальных уравнений, которая называется информационной матрицей Фишера (матрицей моментов):

    (7)

Умножив транспонированную матрицу X на матрицу Y, получим:

                                (8)

Используя данные обозначения, систему нормальных уравнений можно записать в матричной форме:

                                                                              (9)

Обозначая обратную матрицу моментов как:

                                                         (10)

получим выражение для матрицы коэффициентов:

                                          (11)

Все статистические свойства коэффициентов линии регрессии определяется матрицей дисперсий ковариаций.

                       (12)

где    cov(bi, bj) ковариации коэффициентов bi, и bj;

S2(bi) дисперсия коэффициента bi;

S2(y) – дисперсия опыта.

Дисперсию опыта можно определить по формулам:

                                                                       (13)

                                                                                 (14)

где    m – количество параллельных опытов.

Если параллельные опыты не проводятся, то для оценки дисперсии опыта ставятся эксперименты в центре плана. Тогда дисперсия определяется по формуле:

                                                        (15)

где     - количество опытов в центре плана.

Так как ядро плана ортогонально, то для сохранения ортогональности композиционного плана необходимо при построении матрицы планирования обеспечить условия:

Величина  зависит от фактора и от плеча d:

;

Для k=3 ядро =15, =11/15=0.7303, d=1.2154

 

2.2 Кодирование факторов

Кодирование факторов используется для перевода натуральных факторов в безразмерные величины, чтобы построить стандартную план – матрицу эксперимента.

Для перевода заполняется таблица кодирования факторов на двух уровнях. В качестве 0-го уровня обычно выбирается центр интервала, в котором предполагается вести эксперимент.

Связь между кодовым и натуральным значениями фактора:

                                                                                    (16)

где    Xi – натуральное значение фактора;

Xi0 –значение этого фактора на нулевом уровне;

dI интервал варьирования факторов.

Составим таблицу кодирования факторов, используя исходные данные.


Таблица 1 - Таблица кодирования факторов

 

2.3 Составление план матрицы

В план – матрице должны быть указаны все возможные комбинации уровней факторов.

Таблица 2 – Расширенная план матрица ортогонального плана

 

2.4 Проверка воспроизводимости опытов

При одинаковом числе параллельных этапов воспроизводимость опытов определяется по критерию Кохрена.

Для этого сначала считаются дисперсии, характеризующие рассевание результатов на каждом u-м опыте.

Проверка воспроизводимости опытов показана на рисунке 2.

Рисунок 2- Воспроизводимость опытов

Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.