скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Технологія Frame Relay


РОЗДІЛ 2. ОПИС ТЕХНОЛОГІЇ FRAME RELAY

2.1 Структура мережі Frame Relay

Протокол ретрансляції фреймів забезпечує пакетно-комутуючий обмін даними, який проходить по інтерфейсу між пристроями користувача (такими як маршрутизатори, мости хости) і мережевим обладнанням (такими як комутуючі вузли).

Як було сказано раніше, пристрої користувача називають (Data Terminal Equipment, DTE ), а мережеве обладнання, взаємодіюче з DTE, називається завершеним обладнанням канала даних (Data Circuit-Terminating Equipment, DCE). [6].

2.2 Технологія передачі даних з використанням VC

FR допускає змінну довжину кадру - від кількох байтів до 2000 байт. Гнучка зміна довжини кадру дає змогу налаштовуватися до зміни навантаження. З іншого боку, вона призводить до змінної затримки у передаванні інформації та неможливості роботи з ізохронними потоками (відео та аудіо інформація).

Frame Relay використовує сталі віртуальні канали (Permanent Virtual Chennel, РVС). У випадку розірвання зв'язку Frame Relay автоматично перемаршрутизову сполучення. РVС автоматично виділяються під час приєднання до мережі. Перед початком сполучення користувачу забезпечують:

ü   Гарантовану швидкість передавання інформації (Commited Information Rate, СІR) швидкість з якою мережа буде передавати дані користувача.

ü   Гарантовану величину пульсації (Committed Burst Size, Вс) – максимальна кількість байтів, яке мережа буде передавати від даного користувача за інтервал часу Т, називаємий часом пульсації, дотримуючись гарантованої швидкості передавання СІR.

ü   Допоміжна величина пульсації (Excess Burst Size, Ве) – максимальна кількість байтів, які мережа буде пробувати передавати з зверх встановленого значення Вс за інтервал часу Т.

Якщо приведені вище величини відомі, то час Т визначається наступною формулою:

T=Bc/CIR

Основним параметром по якому абонент і мережа заключає згоду при з’єднанні віртуального канала, являється гарантована швидкість передачі даних. Для постійних віртуальних каналів ця згода являється частиною контракту на користування послугами мережі. При встановленні з’єднання комутуючого віртуального канала (Switching Virtual Chennel, SVC) згода про якість обслуговування заключається автоматично. Потрібні параметри передаються в пакеті запиту на встановлення з’єднання.

Швидкість передачі даних вимірюється на контрольному інтервалі часу Т, на якому провіряються умови згоди. Тобто користувач не повинен в цьому інтервал передавати в мережу дані з середньою швидкістю більшою за СІR . Якщо ж користувач порушує умови згоди, то мережа не гарантує доставку кадра і поміча цей кадр признаком готовності до видалення – DE=1. Однак такі кадри помічені такою ознакою видаляються із мережі в тому випадку, коли комутатори мережі перенавантажені. Якщо перенавантаження немає, то кадри з признаком DE=1 доставляються адресату.

Така поведінка мережі відповідає випадку, коли загальна кількість даних переданих користувачем в мережу за період Т, не перевищує значення Вс+Ве. Якщо ж цей поріг перевищенний то кадр не помічається ознакою DE, а не гайно видаляється.

Рисунок паказує випадок, коли за інтервал часу Т в мережу по віртуальному каналу поступило 5 кадрів. Середня швидкість надходження даних в мережу на цьому інтервал складає R біт/с і вона виявилась більша за СІR. Кадри F1, F2 і F3 доставили в мережу дані, загальна сума, яких не перевищила порогу Вс, тому ці кадри пішли далі з ознакою DE=0. Дані кадра F4, добавлені до даних кадрів F1, F2 і F3 уже перевищили поріг Вс, але ще не перевищили порогу Вс+Ве, тому кадр F4 також пішов далі, але уже з ознакою DE=1. Дані кадра F5 добавлені до попередніх кадрів, перевищели поріг Вс+Ве, тому цей кадр був видалений із мережі.[1].

2.3 Основні принципи роботи Frame Relay

2.3.1 VC, ідентифікація VC

Кожне з’єднання PVC і SVC ідентифікується за допомогою дентифікатора каналу передачі даних (Data-Link Control Identifier, DLCI). DLCI схожий на телефонний номер. Різниця полягає в тому, що сфера його дії обмежується тільки локальною ділянкою мережі. Завдяки цьому різн маршрутизатори в мережі можуть повторно використовувати той самий DLCI, що дозволяє мережі підтримувати велику кількість віртуальних каналів. Таблиці перехресних з’єднань (cross-connect tables) поширювані між всіма комутаторами Frame Relay в мережі, встановлюються між вхідними вихідними DLCI.


На рисунку зображено три уявних PVC, один між Штаб-квартирою і Регіональним центром 1, другий між Штаб-квартирою і Регіональним центром 2 і третій між Регіональним центром 1 Регіональним центром 2. Для ссилки на свій PVC з Штаб-квартирою, Регіональний центр 1 використовує DLCI 15, в той же час Штаб-квартира використовує для цієї ж цілі DLCI 25. Для ссилки на свій PVC з Штаб-квартирою, Регіональний центр 2 використовує DLCI 12, в той же час Штаб-квартира використовує для цієї ж цілі DLCI 25. Аналогічно це проходить і для третєго уявного PVC. [1,5].

2.3.2 Структура FR-кадра

Структура кадру Frame Relay показана на рис.

ü   Прапорець вказує на початок і кінець кадру і починається з такою послідовністю 01111110. Для запобігання випадкової імітації послідовності “Прапорець” в середині кадру при передачі провіряє вміст між двума прапорцями і після кожної послідовності, яка складається із п’яти ідучих підряд бітів “1” вставляється біт “0” Ця процедура називається Bit Stuffing. Вона є обов’язковою при формуванні любого кадру Frame Relay, при отриманні ці біти “0” відкидаються.

ü   Дан поле змінної довжини, вміщує в собі інкапсульовані дані протоколів верхніх рівнів.

ü   FCS” (Frame Check Sequence) — перевірочна послідовність кадру, використовується для забезпечення цілісності передаючих даних.

ü   Заголовок” – вказує довжину адресного поля. Заголовок протокола ретрансляції фреймів мають довжину 2 байта. Восьмий біт кожного байта адресного поля використовується для вказання адреси.

Структура заголовка FR-кадру.

ü   DLCI” (Data Link Connection Identifier) — ідентифікатор канального з’єднання складається із 10 бітів, що дозволяє використати до 1024 віртуальних з’єднаннь.

ü   CR” (Command / Response) — переносить признак команди Command, або відповіді Response.

ü   EA (Extended Address – розширений адрес). Якщо біт розширення адреса встановлений в нуль, то признак називається ЕА0 і означає, що в наступному байті знаходиться продовження поля адреса, а якщо біт розширення адреса встановлений в одиницю, то поле називається ЕА1 і означа закінчення поля адреса.

ü   FECN” (Forward Explicit Congestion Notification) – пряме явне повідомлення про перенавантаження.

ü   BECN” (Backward Explicit Congestion Notification) – зворотнє явне повідомлення про перенавантаження.

ü   DE” (Discard Eligibility) – ознака готовності до видалення. Якщо DE=1, то ці кадри можуть бути видалені лише в тому виадку коли комутатори мережі перенавантажені. [1, 6].


2.3.3 Взаємодія DLCI з IP-адресою (Invers - ARP)

Inverse Address Resolution Protocol (протокол рішення адрес) - мережний протокол канального рівня призначений для перетворення IP-адрес (адрес мережного рівня) в MAC-адреси (адреси канального рівня) у мережах TCP/IP. Цей протокол в основному використовується в Frame Relay і АТМ.

ARP протокол - дуже розповсюджений і надзвичайно важливий протокол. Кожний вузол мережі має дві адреси: фізичну адресу і логічну адресу. У мережі Frame Relay для ідентифікації відправника і отримувача інформації використовується обидв адреси. Інформація відправлена від одного комп'ютера іншому по мережі містить у собі фізичну адресу відправника, IP-адресу відправника, фізичну адресу одержувача і IP-адресу одержувача. ARP-Протокол забезпечує зв'язок між цими двома адресами. Існує чотири типи ARP-Повідомлень:

ü   ARP-запит (ARP request)

ü   ARP-Відповідь (ARP reply)

ü   RARP-Запит (RARP-request)

ü   RARP-Відповідь (RARP-reply).

Локальний хост за допомогою ARP-Запиту запитує фізичну адресу хоста-отримувача. Відповідь (фізична адреса хоста-отримувача) приходить у вигляді ARP-Відповіді. Хост- отримувача, разом з відповіддю, шле також RARP-Запит, адресований відправникові, для того, щоб перевірити його IP-адрес. Після перевірки IP-адреса відправника починається передача пакетів даних. Перед тим, як створити підключення до якого-небудь пристрою в мережі IP-Протокол перевіря свій ARP-Кеш, щоб з'ясувати, чи не зареєстрована в ньому вже потрібна для підключення інформація про хост- отримувача. Якщо такого запису в ARP-Кеші не має, то виконується широкомовний ARP-Запит. [7].


2.4 Розштрення Frame Relay – LMI

Як ми вже говорили в 1990 році компанія Cisco, Digital Equipment Corporation, Northern Telecom і StrataCom утворили консорціум метою, якого був розвиток технології Frame Relay. Ця група виробників взяла за основу протокол Frame Relay схвалений комітетом СС1ТТ і добавила до нього розширення, яке позволяє пристроям між мережевої взаємодії оптимально обмінюватися даними в мережі Frame Relay.

Ці рішення називаються інтерфейсом локального управління (Local Management Interface — LMI) дозволяють DTE – пристроям мережі Frame Relay (наприклад, маршрутизаторам) спілкуватися з DCE – пристроями і виконувати обмін службовою інформацією, яка використовується для пердачі між мережного трафіка по глобальній мережі Frame Relay. Повідомлення LMI представляють собою інформацію про значення DLCI і їх характер (локальні чи глобальні), а також про стан віртуальних каналів.

Специфікація протокола Frame Relay також включає в себе процедури розсилки LMI. Повідомлення LMI розсилаються в фреймах, розрізняючись один від одного – індивідуальними LMI – ідентифікаторами (DLCI) визначеними в специфікациї консорціума, як DLCI=1023. Формат LMI – кадра зображений на рисунку.

 
1 байт 2 1 1 1 1 Перемінне 2 1
Прапорець

Ідентифікатор

LMI

Індикатор ненумерованої інформації Дискримінатор протокола Зсилка на виклик Тип повідомлення Інформаційн елементи FCS Прапорець

Після поля прапорець і поля ідентифікатор LMI фрей містить 4 обов’язкових байта. Індикатор ненумерованої інформації (unnumbered information indicator) – останній (poll/final) біт встановлений в нуль. Дискримінатор протокола (Protocol Discriminator)– вміщує в собі значення, визначаюче LMI. Зсилка на виклик (Call reference) – завжди заповнений нулями. Тип повідомлення (massage type). В комірці тип повідомлення визначені 2 типи повідомлень: повідомлення запитів про стан і повідомлення про теперіщній стан. Повідомлення про теперіщній стан являютья відповідями на повідомлення запитів. Повідомлення про активність (keep alive) – повідомлення посилаєме в обидва кінця з’єднання для підтвердження того, що обидві сторони продовжують розглядати з’єднання, як ативне. Повідомлення про статус PVC представляють собою приклади таких повідомлень. Розом взяті запити про статус і відповіді на них помагають провірити цілісність логічного і фізичного каналів. Ця інформація має критично важливе значення для маршрутизації по скільки протоколи маршрутизації приймають рішення, основані на припущенні цілісності мережі.

Дал слідує поле інформаційного елемента (Information Element, IE) яке містить в собі змінну кількість байт. За полем тупу повідомлення знаходиться деяка кількість IE. Кожний нформаційний елемент складається із одно-байтного ідентифікатора IE, поля довжини IE і одного або декількох байт як вміщують конкретні дані. [6].


РОЗДІЛ 3. ПЕРЕДАЧА ГОЛОСОВИХ ДАНИХ FRAME RELAY CISCO

Компанія Cisco Systems, заснована невеликою групою вчених

Стенфордского університету. В 1986 році компанія Cisco представила свій перший продукт.

Cisco поставляє більше 80% маршутизаторів по всьому світі, тобто є основою Internet. Сьогодні компанія є основним провайдером комп'ютерних мереж для бізнесу. Мережні рішення Cisco забезпечують роботу об'єднаних мереж тисяч компаній, університетів, урядових агентств і служб в усьому світі.

Передача голосових даних методом VoFR є найбільш досконалим (в порівнянні з VoIP) способом організації альтернативної телефонної мережі на основі мережі з комутацією пакетів. Це означає, що у разі потреби впровадження можливост телефонного зв'язку на КСПД, в першу чергу необхідно орієнтуватися саме на цю технологію. Природно, для виправданого впровадження телефонії на КСПД все таки необхідно перевести магістральні канали на швидкості 2048 кбіт/c.

В якості засобів забезпечення VoFR можна використовувати концентратори доступу Cisco MC3810, які підтримують всі можливості стандарту FRF.11.

Cisco MC3810 підключається до будь-якої стандартної УПАТС і до внутрішньої комутуючо телефонної системи, дозволяючи встановити до 30 мовних трактів. Для стискання (аж до 8 кбіт/с) застосовується стандартний алгоритм G.729 CS-ACELP. Аналіз показує, що при використанні цього алгоритму в каналі 2048 кбіт/с можна організувати до 138 мовних підканалів. Крім того, концентратор доступу MC3810 подавляє ехо-камеру в мовних каналах і підтримує механізм виявлення пауз в розмові. MC3810 підтримує різні варіанти обробки викликів при мовних з'єднаннях здатний працювати в режимі двотонального багаточастотного набору (DTMF), а на невеликих вузлах телефони і магістральні канали можна підключати до MC3810, для того щоб він грав роль місцевого комутатора телефонних викликів. Завдяки цьому, усувається необхідність в УПАТС і інших аналогічних засобах комутації.

Концентратор доступу MC3810 використовує той же інтерфейс управління, що і інші системи компанії Cisco, і використовує розширений список команд для управління передачею мови і відео. Для управління концентратором доступу MC3810 можна також використовувати додаток мережевого управління CiscoView, комплект нструментів, що управляють Netsys Technologies і новітні засоби управління, які компанія Cisco розробила для телекомунікаційних компаній.

На Рис. приведено технічне вирішення міжрегіонального (у сенсі реалізац технології VoFR) вузла КСПД на базі устаткування фірми Cisco.

Рис. Технічне рішення між регіонального вузла.

Технологія Frame Relay призначена для побудови глобальних мереж. У зв'язку із забезпечуваною нею високою ефективністю використання смуги пропускання вона не рідко застосовується для передачі голосу по супутникових каналах. Дана технологія може бути рекомендована для побудови єдиних розподілених мереж на підприємствах або організаціях, які віддалені один від одного на великих відстаннях.

Очевидно, що для реалізації подібної мережі необхідний оператор зв'язку, здатний організувати підключення Frame Relay у всіх офісах замовника. Як правило, ця вимога легко виконується, так як послуги мережі Frame Relay надаються різними операторами.

Основними перевагами VoFR є:

·           Розповсюдження технології Frame Relay, завдяки якому можливе створення розподілених мереж по всьому світу;

·           відносно низька вартість оренди каналів Frame Relay;

·           невисок вимоги до смуги пропускання для передачі одного голосового каналу.

До недоліків розглянутої технології можна віднести:

·           обмеження максимальної пропускної здатності каналу зв'язку до 2 Мбіт/с;

·           недостатньо продумані стандарти і сумісність використання устаткування різних виробників;

·           відсутність стандартів динамічної маршрутизації. [9].

 

ВИСНОВКИ

Отже, технологія Frame Relay – це високошвидкісна технологія передачі даних, яка вміщує в соб характеристики, які роблять технологію ідеальним рішенням для передач мпульсного трафіку. Такий трафік використовується при організац нформаційного обміну між локальною і глобальною мережами.

Переваги Frame Relay полягають не тільки в швидкій передач даних, але й в методах статичного стискання інформації, які дозволяють в декілька разів підвищити ефективність використання каналів зв’язку.

Найбільш ефективне застосування Frame Relay в ситуаціях коли клієнту необхідно об’єднати декілька офісів. Затрати на встановлення і орендна плата при використанні такої технології буде нижча ніж при організації аналогічної схеми зв’язку з використанням виділених каналів, що досягається за рахунок оптимізац використання канальних ресурсів.

В даній курсовій роботі детально описаний і проаналізований метод побудови сучасних корпоративних глобальних мереж, засобами технології Freme Relay.


СПИСОК ЛІТЕРАТУРИ

1.         В.Г. Олифер, А.Н. Олифер Компьютерные сети” 3-е издания.

2.         Інтернет сторінка: http://ranik.ru/protokol-frame-relay-konfigyrirovanie-marshrytizatorov-cisco.html

3.         Інтернет сторінка: http://window.edu.ru/window_catalog/pdf2txt?p_id=

 14055

4.         Інтернет сторінка: http://uk.wikipedia.org/wiki/Frame_relay

5.         Джон Шварц, Тодд Леммл “Cisco Certified Internetwork Expert” учебное руководство.

6.         Группа разработки учебных курсов Всемирной образовательной сети компании Cisco Systems, Inc Основы организации сетей Cisco Том 2.

7.         Інтернет сторінка: http://ru.wikipedia.org/wiki/ARP

8.         Стив Мак-Квери, Келли Мак-Грю, Стефан Фой “Передача голосовых данных по сетям Cisco Frame Relay, ATM и IP”.

9.         Інтернет сторінка: http://kunegin.narod.ru/ref/dip/practic.htm


Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.