скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Мехатронная система обеспечения заданной скорости электровоза на различных участках пути

Далее необходимо произвести выключение и включение шкафа МСУД1, при этом происходит запуск технологических программ в ЦМК, выбранном МПК и БИ1. При установлении связи шкафа МСУД1 с блоком БИ1 дважды нажать клавишу "МСУД" и проследить на выбранном кадре работу резервного и основного каналов связи. При нормальной работе обоих каналов можно перейти к проверке звуковой сигнализации. Для этого нажать клавишу "выбор кадра" и клавишу "7", при этом должно прозвучать звуковое сообщение "Задана рекуперация" или "Задана тяга". После произведенных вышеперечисленных проверок аппаратура МСУД считается годной к эксплуатации.

2.8 Использование аппаратуры по назначению, техническое обслуживание и текущий ремонт

2.8.1 Состав аппаратуры МСУД

обеспечивает ее использование в электровозе ЭП1 согласно схеме принципиальной цепей автоматики ИДМБ.661142.004 33.2  и в электровозе ВЛ80 согласно схеме ИДМБ.661142.007 Э3.2.

Техническое обслуживание и ремонт осуществляются в соответствии с видами обслуживания и подразделяются на;

- техническое обслуживание ТО-2;

- текущий ремонт ТР;

- средний ремонт СР;

- капитальный ремонт КР.

2.8.2 При техническом обслуживании ТО-2:

- убедитесь в наличии пломб на дверцах шкафа МСУД 1.2 и крышках блоков БИ1. При нарушении пломб аппаратура МСУД должна подвергнуться контролю в объеме ТР в депо приписки;

- проведите проверку аппаратуры МСУД в объеме ТО-2 в соответствии с ИДМБ.661142.004РЭ или ИДМБ.661142.007 РЭ. Проверку проводите для каждого микроконтроллера ЦМК, МПК1 и МПК2. При обнаружении неполадок в работе аппаратуры причину неисправности необходимо обнаружить и устранить. Неисправную ячейку замените из состава ЗИП;

- при отказе одного из микроконтроллеров МПК1 или МПК2, а также во время движения электровоза допускается следование электровоза основного депо. При этом питание отказавших микроконтроллеров должно быть отключено.

2.8.4 При текущем ремонте ТР:

- проверьте затяжку всех разъемов и при необходимости подтяните крепеж

- проведите проверку аппаратуры МСУД в объеме ТР в соответствии с ИДМБ661142.007 РЭ. Проверку проводите для каждого микроконтроллера ЦМК, МПК1 и МПК2. При наличии бросков тока коря двигателей в тяге или рекуперации замените ячейку ВФС из состава. Неисправную ячейку проверьте на контрольном стенде и восстановите и отправьте для ремонта на завод-изготовитель электровоза.

2.8.5 При среднем ремонте СР:

- отсоедините соединительные кабели от разъемов шкафа МСУД1.2 и -доков БИ1. Снимите двери шкафа МСУД1.2 и крышки блоков БИ1.2;

- аккуратно извлеките из шкафа МСУД1 все ячейки, очистите их от пыли загрязнений, промойте контакты разъемов ячеек спиртом, проверьте со-

стояние печатных плат, надежность пайки и крепления деталей;

- произведите проверку на функционирование и контроль параметров ячеек на контрольном стенде в соответствии с его инструкцией и при необходимости выполните ремонт;

- продуйте чистым сжатым воздухом ниши, монтаж и разъемы шкафа; МСУД, проверьте визуально состояние монтажа шкафа;

- проверьте сопротивление изоляции токоведущих цепей относительно корпуса и между цепями в соответствии с таблицей инструкции контрольного стенда. Сопротивление изоляции должно быть не менее 10 МОм. Контроль сопротивления производите мегомметром на напряжение 500 В;

- продуйте чистым сжатым воздухом ниши и монтаж блоков БИ1, про­верьте визуально состояние монтажа блоков БИ1.2и крепления плат;

- проверьте функционирование блоков БИ1.2 в составе контрольного стенда и при необходимости выполните ремонт. При сборке блока БИ1.2 после ремонта все крепежные детали должны быть установлены с применением краски;

- установите в соответствии с маркировкой ячейки в шкаф МСУД 1.2 и закрепите их винтами;

- закройте блоки БИ1.2 крышками, опломбируйте их и установите блоки в пульты машиниста;

- работоспособность неисправной ячейки восстановите в условиях де­по приписки или отправьте для ремонта на завод-изготовитель электровоза;

- соедините шкаф МСУД1.2 и блоки БИ1.2 штатными кабелями и вы­полните проверку аппаратуры МСУД в объеме ТР, после чего установите двери шкафа и опломбируйте аппаратуру.

2.8.6 Замена отказавших ячеек и плат аппаратуры МСУД

должна производиться на обесточенной аппаратуре ячейками из состава ЗИП. После замены ячейки ЗИП не требуют дополнительной подстройки.

2.8.7 Восстановление элементов аппаратуры МСУД в пределах срока гарантии

осуществляется предприятием-изготовителем, для чего неисправные элементы должны быть отправлены изготовителю электровоза с описанием внешних признаков повреждения и причин, приведших к отказу. В случаях, если при эксплуатации были нарушены режимы применения аппаратуры, имеются механические повреждения или признаки воздействия на входы/выходы напряжений, превышающих допустимые значения, ремонт ячеек выполняется за счет потребителя.

2.8.8 Капитальный ремонт КР аппаратуры

производится по истечении срока службы (10 лет). Допускается продление срока службы аппаратуры после замены ячеек, содержащих комплектующие с истекшим сроком службы.

2.8.9 При проведении вышеуказанных работ, при необходимости переноски более двух ячеек пользоваться специальной тарой.


3 Выбор микроконтроллера

3.1 Общая характеристика

Семейство 16-разрядных микроконтроллеров Infineon (бывший Siemens Semiconductors) C166 содержит кристаллы с различным уровнем периферии и производительности, удовлетворяющие требованиям широкого спектра специфических приложений. Все члены семейства С161, С163, С164-CI, С165, 80С166, и C167 основываются на одной и той же базовой архитектуре и поддерживают единую систему команд (за исключением расширений для новых членов семейства). Это позволяет безболезненно переходить на следующий уровень производительности при реализации более сложного проекта.

Для нашей системы управления мы выбираем микроконтроллер 80С166, он удовлетворяет нашим требованиям, значительно превосходит микроконтроллер фирмы Octagon System 6010 и что не мало важно значительно дешевле. Внешний вид микроконтроллера Siemens 80C166 представлен на рисунке 3.1.


Рисунок 3.1 - Внешний вид микроконтроллера Siemens 80C166

§     Микроконтроллеры (МК) строятся по модульному принципу, предполагающему разделение на три основных системы: ядро центрального процессора, контроллер прерываний и периферийные модули. Обмен данными внутри кристалла организован при помощи четырех внутренних шин:

§     32-разрядная шина к внутренней памяти программ, обеспечивает считывание двухсловных команд из встроенного ПЗУ за один цикл;

§     две 16-разрядные шины к встроенному двухпортовому регистровому ОЗУ, что позволяет одновременно производить запись и чтение данных;

§     16-разрядная шина для обмена с периферийными модулями;

§     дополнительная 16-разрядная X-шина, являющаяся внутренним продолжением внешней системной шины, служит для подключения дополнительной памяти и новых периферийных модулей. На рисунке 3.2 представлена структурная схема микроконтроллера.


Рисунок 3.2 – Структурная схема МК

Эффективное программирование МК С166 достигается благодаря мощной системе команд, поддерживающей вычисления над 8-, 16- и 32-разрядными операндами, операции умножения и деления (MUL, DIV), контроль границ стека, управление периферией через регистры специальных функций Special Function Register (SFR). Следует также отметить высокую пропускную способность, мощную систему адресации и поддержку программирования на языке высокого уровня. При тактовой частоте процессора 16, 20 и 25 МГц цикл выполнения команды составляет 125,100 и 80нс соответственно.

Команды С166 можно разделить на следующие основные группы:

§     Преобразования данных: арифметические и логические команды, операции быстрого умножения/деления (0.5/1.0 мкс @ 20МГц), операции сдвигов на 1...15 разрядов за 100 нс, операции с битами во встроенном ОЗУ и регистрах SFR.

§     Пересылки данных: команды MOV со всеми видами адресации, преобразование байта в слово, операции с системным стеком (PUSH, POP) с проверкой на переполнение и стеком пользователя (MOV с автоинкрементом и автодекрементом).

§     Управления программой: команды перехода и вызова и условные переходы по 16 различным условиям (при выполнении условия для перехода требуется только один дополнительный цикл), программные и аппаратные ловушки (Traps), быстрые контекстные переключения за 100 нс.

§     Специальные команды: сокращения энергопотребления и системного управления, непрерываемые последовательности команд, специальные приемы адресации.

3.2 Четырехступенчатый конвейер команд

§     Для увеличения скорости выполнения команд контроллеры семейства С166 содержат 4-х ступенчатый конвейер команд (рисунок 3.3). За один машинный цикл C166 на различных ступенях конвейера выполняет одновременно до 4 команд. Это означает, что обработка каждой команды по времени длится четыре машинных цикла, хотя выполнение команды происходит в течение одного цикла. Таким образом, конвейеризация имеет существенные преимущества для ускорения выполнения последовательности команд при достаточной пропускной способности шины. Время исполнения большинства команд составляет 100 нс при тактовой частоте 20МГц.

схема конвеера команд

Рисунок 3.3 – Конвейер команд

§     Оптимизированная обработка команд перехода и вызова (Branch Instruction).

В то время как при выполнении обычных команд конвейер не вызывают проблем, команды перехода и вызова требуют выполнения специальных мероприятий. Ко времени достижения командой перехода или вызова фазы Execute следующая по адресу перехода команда только начинает исполнение фазы Fetch. Следовательно, команда, проходящая в конвейере на фазе Decode сразу вслед за командой перехода, должна игнорироваться. В данном случае вместо полного очищения конвейера используется переход с задержкой ("delayed branch"). Ситуация с условным переходом более сложная, т.к. неясно, будет ли следующая команда соответствовать результату проверки условия или нет. Поэтому при выполнении условия перехода вставляется холостая команда на фазе Decode и требуется дополнительный машинный цикл. Для ситуаций без перехода холостая команда не вставляется и один машинный цикл экономится. Таким образом, для команд Jump, Cond. Jump, Call, Return,... обычно требуется только один дополнительный машинный цикл для выборки команды из новой области памяти.

§     Обработка меток (Loop Control). Обычная задача в управляющих приложениях - просмотр таблиц, который состоит в повторном переходе по одному и тому же фиксированному адресу. Если в данном случае не предпринять специальных шагов, то при обработке каждой метки возникает бесполезный машинный цикл. Поэтому здесь осуществлен механизм кэширования (Jump Cache). При первичной обработке метки вставляется пустая команда и, как и раньше вхолостую тратится один машинный цикл. Однако адрес таблицы запоминается в кэш-памяти и при дальнейшем прохождении через метку адрес извлекается из кэш и вставляется непосредственно в фазу Decode. Таким образом, в данном случае переход осуществляется за один машинный цикл.

§     Краевые эффекты конвейера. В фазах Fetch и Decode может одновременно осуществляться запрос шины, если на завершающей фазе текущей команды осуществляется чтение. Предупреждение конфликтов осуществляет контроллер внешней шины External Bus Controller,

§     управляя приоритетами записи, выборки и чтения. Следует упомянуть также о краевых эффектах конвейера, которые могут возникнуть на фазе Write Back при использовании адреса, уже измененного на фазе Fetch.    Хотя специальное аппаратное устройство искусственно передвигает вперед операнды чтения и записи, необходимо постоянно об этом помнить. Команды умножения и деления занимают 5 и 10 машинных циклов соответственно и имеют сложный операционный код. Поскольку эти команды длятся больше одного цикла, в конвейер на стадии Decode вставляются холостые команды.

3.3 Конфигурирование внешней шины

§     Одним из наиболее полезных свойств C166 является поддержка нескольких режимов конфигурации, когда, например, выборка кода и данных из внешней памяти осуществляется по 16-разрядной демультиплексной шине с нулевым ожиданием, а доступ к медленной периферии (часы RTC) из соображений экономии может происходить по 8-разрядной шине с 3 состояниями ожидания. В первом случае шина управляется регистром конфигурации BUSCON0, а во втором случае - регистрами конфигурации BUSCON1 и ADDRESEL1, которые определяют режим шины и адресный диапазон соответственно.

§     В ряде микроконтроллеров (C165 и C167) присутствует до четырех независимых дополнительных регистров конфигурации BUSCON1-BUSCON4, каждому из которых соответствует свой внешний вывод CS для соединения с входом разрешения выборки кристалла. Размер и начальный адрес диапазона для каждого сигнала CS1-CS4 задается в регистрах ADDRSEL1-ADDRSEL4. При задании областей действия сигналов CS необходимо помнить, что начальный адрес должен быть кратен размеру блока. Например, для блока размером 64 Кбайт, начальный адрес должен быть равен 0x00000 или 0x10000 или 0x20000 и т.д.

§     Характеристики системной шины для областей памяти, не перекрываемых данными четырьмя адресными диапазонами, задаются в регистре BUSCON0 и устанавливаются аппаратно при считывании линий порта 0 во время сброса, т.е. сигнал CS0 используется для адресации всех областей не определенных сигналами CS1-CS4.Кроме того, для экономии внешней логики присутствуют программируемые сигналы управления шиной. Это означает, что при более чем 20-кратном выигрыше в производительности проект с С166 получается проще, чем для 8031. С166 содержит также программируемые функции арбитража шины HOLD/HOLDA/BREQ для операций межпроцессорного обмена.

§     Непосредственное управление внешней шиной в соответствии с содержимым регистров конфигурации осуществляет контроллер внешней шины. В каждом диапазоне временные параметры циклов чтения-записи и режим работы системной шины задаются специальными битами в регистрах конфигурации. Ширина адресной шины может составлять в зависимости от кристалла 16 (для несегментированного режима), 18 (80C166), 22 (C164) и 24 (C165 и С167) разряда. Ширина шины данных может быть 8 или 16 разрядов, и работа может вестись в мультиплексном и демультиплексном (MUX и NMUX) режимах (у C161 и C164 предусмотрена только мультиплексная внешняя шина). Демультиплексный шинный интерфейс оптимален при высоких требованиях к времени обращения к внешним ОЗУ и ПЗУ. Как уже отмечалось, режимы работы шины могут динамически меняться в процессе выполнения программы. Сравнение скорости работы для различных конфигураций шины при частоте ЦПУ 20 МГц приведено в таблице

3.4 Система прерываний

§     Разветвленная схема прерываний C166 с 64 уровнями (16 уровней и на каждом уровне группа из 4 прерываний) обеспечивает гибкое и быстрое

§     задание приоритетов и обслуживание запросов прерываний (рисунок 3.4). В контроллере прерываний предусмотрены аппаратные ловушки (Hardware-Traps) и программные ловушки (Software-Traps), позволяющие обрабатывать ошибки, возникающие при неверном исполнении команд, нарушении границ стека, а также отслеживать немаскируемое прерывание NMI, программный и аппаратный сброс. Приоритеты прерываний от аппаратных и программных ловушек самые высокие.

§     Контроллер прерываний обеспечивает малое время отклика на запрос прерывания: минимальное время составляет 250 нс @20 МГц, а максимальное - 600 нс. Чтобы уменьшить время отклика при выполнении сложных команд умножения и деления, занимающих 5 и 10 циклов соответственно, также предусмотрено прерывание. Обработка прерываний осуществляется в течение малых временных интервалов. Это очень важно для высокоуровневых приложений, таких как управление приводами, когда решаются задачи цифровой обработки сигналов и весьма нежелательны флуктуации входных и выходных переменных. Таким образом, достигается высокая производительность в реальном масштабе времени.

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.