скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Линзовая антенна РЛС и ППФ

Частотная характеристика каждого фильтра имеет переходную область между полосой пропускания и полосой заграждения, то есть между частотами и . В этой области затухание меняется от максимального значения до минимального. Обычно стараются уменьшить эту область, что приводит к усложнению фильтра, увеличению числа его звеньев. При проектировании фильтров, как правило, задаются следующие характеристики: полоса пропускания, полоса заграждения, средняя частота, затухание в полосе пропускания, затухание в полосе заграждения, крутизна изменения затухания в переходной области, уровень согласования по входу и по выходу, характеристики линии передачи, в которую включается фильтр, тип линии передачи. Иногда оговариваются фазовые характеристики фильтра [6].

В данной курсовой работе необходимо рассчитать ППФ, используя следующие данные:  МГц, дБ, МГц, дБ.

2.8.1 Расчет низкочастотного фильтра прототипа

В настоящее время наиболее распространенной методикой расчета фильтров СВЧ является методика, согласно которой вначале рассчитывается низкочастотный фильтр-прототип. Нахождение параметров схемы фильтра-прототипа по заданной частотной характеристике фильтра является задачей параметрического синтеза. Для общности результатов все величины нормируются. Сопротивления нагрузки и генератора принимаются равными единице. Наряду с нормировкой по сопротивлению проводится нормировка по частоте, например граничная частота полосы пропускания фильтра принимается равной единице. Таким образом, расчет фильтра СВЧ сводится к синтезу схемы низкочастотного прототипа и замене элементов с сосредоточенными параметрами их эквивалентами с распределенными параметрами.

Для аппроксимации частотных характеристик применяется ряд функций, удовлетворяющих условиям физической реализуемости фильтров. Наиболее распространенными являются максимально плоская и равноволновая аппроксимации, использующие полиномы Баттерворта и Чебышева соответственно.

Рассчитаем фильтр с максимально плоской характеристикой затухания. Она монотонно возрастает при повышении частоты:

,

где   - число звеньев фильтра прототипа;

         - нормированная частота;

         - коэффициент пульсаций;

         - граничная частота полосы пропускания;

         - затухание на частоте

Максимально плоская характеристика затухания фильтра – прототипа нижних частот представлена на рисунке 2.16

                                                


                        

Рисунок 2.16 - Максимально плоская характеристика затухания фильтра – прототипа нижних частот

Число звеньев фильтра прототипа  может быть найдено из требований к АЧХ фильтра. Так, для фильтра с максимально плоской АЧХ число звеньев определяется следующим образом:

,

Возьмем , тогда схема фильтра-прототипа нижних частот будет выглядеть следующим образом

Схема фильтра-прототипа нижних частот представлена на рисунке 2.17

Рисунок 2.18 - Схема фильтра-прототипа нижних частот

Параметры фильтра с максимально плоской характеристикой можно рассчитать по следующей формуле:

    

,

где    - коэффициент пульсаций;

Таким образом,

g0=1, g1=0.914, g2=1.829, g3=0.914, g4=1.

Денормировки параметров фильтра производится с помощью соотношений:

,           ,          

Здесь обозначения со штрихами относятся к нормированным параметрам фильтра-прототипа, без штрихов - к денормированным: , , , , .

Так как будущий фильтр будем ставить в коаксиальный тракт передачи, то Ом, тогда

               

                                         

2.8.2 Расчет ППФ

Для проектирования ППФ воспользуемся фильтром-прототипом нижних частот и реактансным преобразованием частоты:

где    - центральная частота ППФ;

         ;

          - полоса пропускания ППФ [6].

Любая индуктивность  в фильтре-прототипе с единичной граничной частотой  после выполнения частотного преобразования трансформируются в последовательный контур с параметрами:

         

Одновременно любая емкость  в фильтре-прототипе превращается в параллельный колебательный контур с параметрами:

        

Эквивалентная схема ППФ представлена на рисунке 2.19

Рисунок 2.19 - Эквивалентная схема ППФ

Таким образом,

                           

    

       

2.8.3 Реализация ППФ

По способу реализации ППФ можно разделить на следующие типы: на одиночной МПЛ с зазорами; на параллельных связанных полуволновых резонаторах; на встречных стержнях; с параллельными и последовательными четвертьволновыми шлейфами длиной , где  - длина волны в линии, соответствующая средней частоте полосы пропускания ППФ; с двойными шлейфами и четвертьволновыми соединительными линиями; на диэлектрических резонаторах.

Выполним ППФ на микрополосковых линиях (МПЛ).

Отрезки микрополосковых линий выполняются в виде тонких слоев металла, нанесенных на листы диэлектрика (подложки). Наиболее распространены экранированные несимметричные МПЛ. МПЛ используются во всем диапазоне СВЧ. По сравнению с полыми волноводами МПЛ обладают рядом недостатков – имеют более высокие погонные потери и сравнительно низкую передаваемую мощность. Кроме того, открытые МПЛ излучают энергию в пространство, из-за чего могут возникать нежелательные электромагнитные связи.

Но МПЛ обладают и важными достоинствами. Они имеют малые габариты и массу, дешевы в изготовлении, технологичны и удобны для массового производства методами интегральной технологии, что позволяет реализовать на пластине из металлизированного с одной стороны диэлектрика целые узлы и функциональные модули в микрополосковом исполнении [6].

Реализация последовательных колебательных контуров в МПЛ очень затруднена. Вместе с тем последовательное включение можно заменить параллельным с помощью преобразований:

 ,          

                                   

                                    

                                                               

После замены схема ППФ представлена на рисунке 2.20

Рисунок 2.20 - Схема ППФ после замены последовательного включения параллельным

Для практических расчетов волнового сопротивления МПЛ часто используют  выражение, полученное в квазистатическом приближении:

                                    (2.1)

Точность определения  по этой формуле составляет 1% при  и 3% при

Длину волны на низких частотах рассчитаем при помощи формулы, полученной в квазистатическом приближении:

где    - длина волны в свободном пространстве;

         - эффективная  диэлектрическая проницаемость линии.

Эффективная диэлектрическая проницаемость может быть вычислена по формуле:

                                         ,         (2.3)

Микрополосковую линию выполним на подложке с диэлектрической проницаемостью . Отношение  возьмем равным 1.

Тогда

Ом

см

Так как соединительная линия четвертьволновая, то ее длина равна

мм.

Параллельная индуктивность реализуется в виде короткозамкнутого параллельного шлейфа. Реактивное сопротивление такого отрезка линии определяется по формуле

Тогда длина шлейфа, заменяющая каждую индуктивность равна

Параллельная емкость реализуется в виде параллельного шлейфа разомкнутого на конце. Реактивное сопротивление такого отрезка линии определяется по формуле

Тогда длина шлейфа, заменяющая каждую индуктивность равна


2.8.4 Расчет АЧХ

АЧХ фильтра – это есть зависимость вносимого в тракт затухания от частоты. Зная входное сопротивление фильтра можно определить коэффициент отражения

                                                                   (2.7)

Тогда АЧХ будет иметь следующий вид:

                                                                    (2.8)

                      - входное сопротивление фильтра-прототипа нижних частот.

Подставляя в (2.7) и (2.8) получим характеристику затухания, которая представлена на рисунке 2.21

Рисунок 2.21 - Характеристика затухания фильтра-прототипа нижних частот

Определим АЧХ эквивалентной схемы ППФ, которая представлена на рисунке 2.5

где   ;

;

.

Характеристика затухания эквивалентной схемы ППФ представлена на рисунке 2.22

Рисунок 2.22 - Характеристика затухания эквивалентной схемы ППФ


3 Заключение

В ходе данной курсовой работы была спроектирована линзовая антенна и полосовой фильтр со следующими характеристиками:

Коэффициент полезного действия  - 86.5%, КНД – 400, КУ – 346,  ширина диаграммы направленности - , дальность действия 127км.

Линзовые антенны, несмотря на ряд ценных качеств (возможность получения высокой направленности излучения при малом уровне побочных лепестков), пока еще находят ограниченное применение. В настоящее время они применяются, главным образом, в радиорелейных линиях связи. Основным препятствием к широкому внедрению линзовых антенн является их высокая стоимость, связанная с высокой точностью изготовления, и относительная сложность конструкции.

Однако они представляют большой принципиальный интерес. Не исключена возможность, что в дальнейшем они найдут более широкое применение.


Список использованных источников

 [1]  Жук М.С., Молочков Ю.Б. «Проектирование линзовых, сканирующих, широкодиапазонных антенн и фидерных устройств» – М.: Энергия, 1973. – 440 с.

[2]  Зузенко В.Л., Кислов А.Г., Драбкин А.Л. «Антенно-фидерные устройства» – М.,1974

[3]  Зузенко В.Л., Кислов А.Г., Цыган Н.Я. «Расчет и проектирование антенн»

[4]  Лавров А.С., Резников Г. Б. «Антенно-фидерные устройства» – М.: Советское радио, 1974. – 368 с.

[5]  Власов В.И. «Проектирование высокочастотных устройств радиолокационных станций» – М.,1988

[6]  Веселов Г.И. «Микроэлектронные устройства СВЧ» – М.,1988

[7]  Долуханов М.П. «Распространение радиоволн» – М: Связь, 1965

[8]  Красюк Н.П., Дымович Н.Д. «Электродинамика и распространение радиоволн» – М., 1974


Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.