скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Измеримые функции

Курсовая работа: Измеримые функции

Определение и простейшие свойства измеримой функции

Если каждому x из множества E поставлено в соответствие некоторое число f(x), то мы будем говорить, что на множестве E задана функция f(x). При этом мы допускаем и бесконечные значения функции, лишь бы они имели определенный знак, т.е. вводим «несобственные» числа - и +. Эти числа связаны между собой и с любым конечным числом a неравенствами

                                                    -<a<+,

и мы устанавливаем для них следующие законы действий:

+±a=+,     ++(+)=+,      +-(-)=+,

-±a=-,       -+(-)=-,          --(+)=-,

½+½=½-½=+,        +×a=a×(+)=+,

    -×a=a×(-)=-,   если a>0,

+×a=a×(+)=-,

-×a=a×(-)=+,   если a<0

0×(±)=(±)×0=0,

(+)×(+)=(-)×(-)=+,

(+)×(-)=(-)×(+)=-,

=0.

Здесь a обозначает вещественное конечное число. Символы

+¥-(+¥),    -¥-(-¥),     +¥+(-¥),        -¥+(+¥).

,

мы считаем лишенными смысла.

Имея дело с функцией f (x), заданной на множестве E, мы будем символом

E(f>a)

обозначать множество тех x из множества Е, для которых выполнено неравенство f(x)>а.

Аналогичным образом вводятся символы

Е(f³а),   Е(f=а),    Е(f£а),    Е(а<f£b)

и т.п. Если множество, на котором задана функция f(x), обозначено какой-либо другой буквой, например А или В, то мы соответственно будем писать

А(f>а),         В(f>а)

и т.п.

Определение 1. Функция f(x), заданная на множество Е, называется измеримой, если измеримо это множество Е и если при любом конечном а измеримо множество

Е(f>а).

В связи с тем, что здесь  речь идет о множествах, измеримых в смысле Лебега, часто (желая подчеркнуть именно это обстоятельство) говорят об измеримой (L) функции. Если же Е и все множества Е(f>а) измеримы (В), то и f(x) называется измеримой (В) функцией.

Теорема 1. Всякая функция, заданная на множестве меры нуль, измерима.

Это утверждение очевидно.

Теорема 2. Пусть f(x) есть измеримая функция, заданная на множестве Е. Если А есть измеримое подмножество Е, то f(x), рассматриваемая только для xÎА, измерима.

Действительно, А(f>а) =А×Е (f>а).

Теорема 3. Пусть f(x) задана на измеримом множестве Е, представимом в форме суммы конечного числа или счетного множества измеримых множеств Еk :

                                 E=×

Если f(x) измерима на каждом из множеств ER., то она измерима и на Е.

В самом деле, E(f>a)= .

Определение 2. Две функции f(x) и g(x), заданные на одном и том же множестве Е, называются эквивалентными, если

mE (f¹g)=0

Обозначать эквивалентность функций f(x) и g(x) принято так: 

f (x) ~g(x).

Определение 3. Пусть некоторое обстоятельство S имеет место для всех точек какого-нибудь множества Е, кроме точек, входящих в подмножество Е0 множества Е. Если mЕ0  = 0, то говорят, что S имеет место почти везде на множестве Е, или почти для всех точек Е.

В частности, множество исключительных точек Е0  может быть и пустым.

Теперь можно сказать, что две функции, заданные на множестве Е, эквиваленты, если они ровны почти везде на Е.

Теорема 4. Если f(х) есть измеримая функция, заданная на множестве Е, а g(x) ~ f(x), то g(x) также измерима.

Д о к а з а т е л ь с т в о. Пусть А = Е (f ¹ g), B = E – A. Тогда mA = 0, так что В измеримо. Значит функция f(x) измерима на множестве В. Но на множестве В функции f(x) и g(x) неотличимы, так что g(x) измерима на В. Поскольку g(x) измерима и на А (ибо mA = 0), она измерима на Е = А + В.

  Теорема 5. Если для всех точек измеримого множества Е будет f(x) = c, то функция f(x) измерима.

Действительно,

E (f > a) =       

Заметим, что в этой теореме с может быть и бесконечным.

Функция f(x), заданная на сегменте [а, b], называется ступенчатой, если [а,b] разложить точками.

с0 = а< с1<с2<…<сn = b

на конечное число частей,  в н у т р и  которых (т.е. в интервалах (сk, ck + 1) при k = 0, 1, …., n –1) функция f(x) постоянна. Легко понять, что из теоремы 5 вытекает

Следствие. Ступенчатая функция измерима.

Теорема 6. Если f(x) есть измеримая функция, заданная  на множестве Е, то при любом а измеримы множества

E (f ³ a),   E (f = a),    E (f £ a),   E (f < a),

Д о к а з а т е л ь с т в о. Легко проверить, что

E (f ³ a) =

откуда следует измеримость множества E (f ³ a). Измеримость прочих множеств вытекает из соотношений:

E (f = a) = E(f ³ a) – E(f > a),     E(f £ a) = E – E(f > a),

E (f < a) = E – E (f ³ a).

Замечание.  Легко показать, что если хоть одно из множеств

E (f ³ a),  E (f £ a),  E (f < a)

оказывается измеримым при всяком  а, то функция f(x) измерима на множестве Е (которое также предполагается измеримым).

Действительно, тождество ) показывает, например, что f(x) измерима, если измеримы все множества Е (f³а). Сходным образом устанавливаются и остальные утверждения. Таким образом, в определении измеримой функции можно заменить множество  Е (f>a) любым из множеств (1).

Теорема 7.  Если функция f(x), заданная на множестве Е, измерима, а k конечное число, то измеримы и функции 1) f(x) + k, 2) kf(x), 3) çf (x)ç, 4) f2 (x), и если f(x) ¹0, то измерима и функция 5) .

Д о к а з а т е л ь с т в о. 1) Измеримость функции f(x) + k вытекает из соотношения Е (f+ k >a) = E (f>a- k).

2) Измеримость функции kf(x) при k =0 следует из теоремы 5. Для прочих k  измеримость следует из очевидных соотношений

3) Функция çf(x) ç измерима потому, что

4) Аналогично, из того , что

E (f2 > a) =

вытекает измеримость функции f 2 (x).

5) Наконец, при f(x) ¹ 0 имеем

> a) =

откуда и следует измеримость .

Теорема 8. Функция f(x), заданная и непрерывная на сегменте Е=, измерима.

 Д о к а з а т е л ь с т в о. Прежде всего установим, что множество

F = E (f£ a)

замкнуто. Действительно, если x0 есть предельная точка этого множества и xn®x0   (x n  ÎF ), то f(xn) £a  и, в силу непрерывности f(x), будет  f(x0 ) £a,  т.е. x0 ÎF, что и устанавливает замкнутость множества F.

Но тогда множество Е (f>а) = Е – Е(f£а) измеримо, и теорема доказана.

Из самого определения измеримой функции следует, что функция, заданная на неизмеримом множестве, неизмерима.

Однако легко обнаружить существование неизмеримой функции, заданной на измеримом множестве.

Определение 4.  Пусть М есть подмножество сегмента Е = [А, В]. Функция jм (х), равная единице на множестве М и нулю на множестве Е–М, называется характеристической функцией множества М.

Теорема 9.  Множество М и его характеристическая функция jм одновременно измеримы или нет.

Д о к а з а т е л ь с т в о.  Если функция jM (х) измерима, то измеримость множества М вытекает из соотношения

М = Е (jм > 0).

Обратно, если М есть измеримое множество, то соотношения

устанавливают измеримость функции jМ (х).

Отсюда, между прочим, весьма просто получаются примеры разрывных измеримых функций.

Дальнейшие свойства измеримых функций

Лемма.  Если на множестве Е заданы две измеримые функции f(х) и g(х), то множество Е (f >g) измеримо.

Действительно, если мы перенумеруем все рациональные числа r1, r2, r3, …, то легко проверим справедливость соотношения

Е (f > g) =   Е (f > rk) Е (g < rk),

откуда и следует лемма.

Теорема 1.  Пусть f(х) и g(х) суть конечные измеримые функции, заданные на множестве Е. Тогда измерима каждая из функций 1) f(х) – g(х),  2) f(х) + g (х),  3) f(х) . g(х), и если g(х) ¹ 0, то измерима также функция 4).

Д о к а з а т е л ь с т в о.  1) Функция а + g(х) измерима при любом а. Значит (на основании леммы), множество Е (f > а+g ), а так как E(f-g>a)=E(f>a+g), то измерима функция f (х) – g(х).

2) Измеримость суммы f(х) + g(х) следует из того, что

f(х) + g(х) = f(х) – [ - g (х)].

3) Измеримость произведения f(x) .g(x) вытекает из тождества

f(x) .g(x)={[f(x)+g(x)]-[f(x)-g(x)]}

и теоремы 7

4) Наконец, измеримость частного  есть следствие тождества

=f(x) ·.

Эта теорема показывает, что действия арифметики, будучи применены к измеримым функциям, не выводят нас за пределы этого класса функций. Следующая теорема устанавливает сходный результат относительно уже не арифметической операции – предельного перехода.

Теорема 2. Пусть на множестве Е задана последовательность измеримых функций f1(x), f2(x), … Если в каждой точке хЕ существует (конечный или бесконечный) предел

F(x)=fn(x),

то функция F(х) измерима.

Д о к а з а т е л ь с т в о. Фиксируем произвольные  а  и введем в рассмотрение множества

А=Е(f> a + ),       В=.

Эти множества, очевидно, измеримы, и для доказательства теоремы достаточно проверить, что

E(F>a) = .

Займемся же проверкой этого тождества.

Пусть хЕ (F>a), тогда F (x0) > a, и найдется такое натуральное m, что F(x0) > a + 1/m. Поскольку же fk (x)  F (x0), то найдется такое n, что при kn будет

fk(x0) > a + .

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.