скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Динамічна пам'ять, принципи її організації і роботи

Малюнок 3. Структура ОЗП (RАМ) із словарною адресацією типу 2D

Для збільшення швидкодії запам’ятовуючих пристроїв замість адресного доступу використовують асоціативний, за допомогою якого здійснюється пошук інформації вже по визначеній ознаці (замість адресу), наприклад, по співпадінню певних полів слів, які називають тегами, з ознакою, що задається вхідним словом (теговим адресом). Таку асоціативну пам’ять називають кеш-пам’яттю (cache) або прискорюючою. Вона запам’ятовує копію інформації, що знаходиться в основній ОЗП забезпечує швидкий доступ до неї по команді мікропроцесора. Таку швидкодіючу пам’ять, як правило, реалізують на тригерних ЕП. При читанні даних спочатку виконується звертання до КП по схемі, що зображена на мал. 4. Якщо в КП є копія даних адресованої комірки основної пам’яті ЗП, то вона виробляє сигнал Hit (співпадіння „1”) і видає дані на загальну шину. Якщо таких даних немає, то не виробляється сигнал Hit („0”) і тоді виконується читання із основної пам’ят одночасне розміщення даних в КП. МП для прискорення передачі даних може звертатись вже безпосередньо до КП, зчитуючи ці дані і посилаючи їх через шину даних в мікропроцесорну систему. Таке поєднання адресного доступу асоціативного прискорює роботу (звертання) МП до ЗП, тобто збільшує їх швидкодію. Таким чином, архітектура ЗП визначає не тільки швидкодію, але значне зменшення споживаної потужності та площі як ЕП, так і ЗП.

Малюнок 4. Структура взаємодії ОЗП з кеш-пам’яттю МП системи

Область застосування статичних ОЗП в системах обробки інформації визначається їх високою швидкодією. Зокрема, вони широко використовуються в кеш-пам’яті, яка при любій ємності завжди має високу швидкодію. Статичну ОЗП (SRAM), як правило, мають структуру 2DM, а частина їх для кеш-пам’яті будується на структурі 2D. Запам’ятовуючим елементом статичних ОЗП є тригер, який має спеціальну установку та скид. Тому статичні ОЗП називають ще тригерними. Нами були розроблен поставлені на серійне виробництво статичні ОЗП серій К537 РУ6 К-МОН технолог К132 РУ5,8,9 n-МОН технології. ЗЕ на n-МОН транзисторах представляє собою RS-тригер на транзисторах Т1 і Т2 (мал.5) з ключами вибірки Т3 і Т4. При звертанні до даного ЗЕ появляється високий потенціал на шині вибірки ШВі (через ,j позначені номери рядка і стовпця нагромаджувача, на перетині яких розміщений елемент пам’яті ЗЕіj). Цей потенціал відкриває ключі вибірки Т3 і Т4 по всьому рядку, а виходи тригерів рядка з’єднуються із стовбичними (розрядними) шинами запису-зчитування. Одна із цих шин зв’язана з прямим виходом тригера Dj. А друга  з інверсним виходом Dj. Через розрядні шини зчитується стан тригера з використанням диференціального підсилювача зчитування. Через них можна записати дані в тригер, подаючи потенціал лог.0 на ту чи другу шину.

Малюнок 5. Схема тригерного ЗЕ на п-МОН транзисторах а) варіанти навантаження б)

Запам’ятовуюч елементи статичних ОЗП, які виконані по К-МОН технології значно зменшують споживану потужність (як мінімум на порядок) і збільшують швидкодію за рахунок зменшення ємнісних струмів і відпадає необхідність в резисторах Rk та в високочутливих підсилювачів зчитування. Схема такого ЗЕ подана на мал. 6.

Малюнок 6. Схема статичних ОЗП на К-МОН транзисторах а) та схема буферного каскаду на три стани б)

Технологічною особливістю схеми а) є те, що тут використана багатозарядна імплантація для ретроградного формування охоронних областей та n-кишені і юстування порогових напруг UT n- р-канальних транзисторів. Це дає можливість забезпечити перехідну характеристику інверторів з високою крутістю для збільшення швидкодії ЗП і їх високо завадозахищеності. Низький рівень сигналу CS і високий рівень сигналу W/R, що означають дозвіл виконання операції зчитування, створюють на виході елемента АБО-НЕ високий рівень лог.1, що відкриває транзистори Т3 і Т4 і, тим самим, забезпечу роботу інвертора на транзисторах Т1 і Т2, через який дані передаються на вихід DO. При інших комбінаціях сигналів CS і W/R вихід елемента АБО-НЕ має низький лог.0, при якому транзистори Т3 і Т4 є закритими і вихід DO вже знаходиться у відключеному стані. Схема передбачає також інверсний вихід DO.

В протилежність SRAM в динамічних ЗП (DRAM) дані зберігаються у вигляді зарядів мностей МОН структур і основою ЗЕ таких схем є конденсатор певної ємності. Такий ЗЕ значно простіший тригерного (що вміщує 4-8 транзисторів) і дозволя розмістити на кристалі в 4-5 разів більше елементів та забезпечує високу мність ЗП. Але конденсатор, як втратний елемент, втрачає з часом свій заряд, тому для зберігання даних необхідна їх періодична регенерація (через декілька мс) спеціальними контролерами регенерації. Для збереження високої степен нтеграції ЗП типу DRAM використовують однотранзисторні ЕП, розміри яких настільки малі, що на них стали впливати навіть α-частинки, що випромінюються елементами корпусів ВІС. Тому забезпечення високої радіаційно стійкості динамічних ОЗП є актуальною і важливою задачею. Електрична схема, структура ЗЕ і схема його включення в нагромаджувач подані на мал. 7. Ключовий МОН транзистор відключає ЗЕ у вигляді конденсатора Сз від лін запису-зчитування або підключає його до неї, тобто відіграє роль комутатора. Стік МОН транзистора не має зовнішнього виходу і утворює одну із обкладок конденсатора, а другою обкладкою конденсатора є сама кремнієва підкладка. Діелектриком такого конденсатора є підзатворний оксид, властивості якого і визначають електричн характеристики динамічного елемента пам’яті Сз.


Малюнок 7. Електрична схема ЗЕ ДОЗП структура та схема його включення

В режимі зберігання напруга на шині рядка Х близька до нуля і ключовий транзистор закритим і тим самим динамічний конденсатор Сз є відключеним від шини запису- зчитування Y. На конденсаторі зберігається, встановлена при записі, напруга U1 або U0. У випадку зберігання лог. 1 конденсатор С3 буде поступово розряджатись внаслідок існування струмів втрат (як зворотних струмів p-n-переходів) на Si-підкладку. Якщо зберігається лог.0, а напруга на шині Y додатна, то конденсатор Сз буде поступово підзаряджатись передпороговим струмом транзистора. Тому необхідне періодичне відновлення вихідної напруги U1 або U0 на конденсаторі. Цей процес називають регенерацією. Вона здійснюється шляхом зчитування інформації з ЕП, перетворення її в напругу U1, U0 з допомогою підсилювача-регенератора і запис цієї напруги в ЕП. Регенерація проводиться одночасно для всіх елементів одного рядка протягом 1-5 мс[9,10]. Таким чином, важливим параметром динамічних елементів пам’яті є:

1) високі значення напруги пробою конденсатора при малому значенні струмів втрат;

2) малі ТКЕ і tgδ;

3) високе значення діелектричної сталої, бо остання визначає площу нагромаджувача;

4) високу радіаційну стійкість до α-опромінювання. Ясно, що таким вимогам не відповідають ємності, сформовані на основі SiO2, а тільки тонкоплівков конденсатори на основі легованих РЗМ і вуглецем плівок β-тантала.

У режимі запису на шині Y вибраного стовпця встановлюється напруга U1 або U0, а потім подається позитивний імпульс на шину вибірки рядка Х. При цьому транзистор відкривається і на конденсаторі встановлюється та ж напруга, що на шині Y. В решти запам’ятовуючих елементів вибраного рядка в цей час, як правило, іде регенерація.

Процес зчитування інформації із ЗЕ пояснює мал. 7в, де показаний фрагмент ДОЗП, де ЗЕ представлений у вигляді транзисторного ключа та динамічної ємності Сз, підсилювача запису-зчитування, та умовних ключів К1 і К0, що відповідають за запис 1 чи 0. До лінії запису-зчитування підключені ЗЕ в кількості рядків, що в нагромаджквальній матриці. Особливе значення має ємність лінії Сd , яка може перевищувати Сз запам’ятовуючого елемента. Перед зчитуванням проводиться перезаряд ЛЗЗ. При цьому використовують 2 варіанти ЗП з перезарядом ЛЗЗ:

1) до рівня напруги живлення.Ucc;

2) до рівня половини напруги живлення 1/2Ucc.

Особливістю динамічних ЗП для підвищення їх швидкодії, як відзначалось раніше, мультиплексування шини адресу. Адрес відповідно ділиться на два півадреса, один з яких представляє собою адрес рядка, а другий – адрес стовпця нагромаджувача ЗЕ. Півадреса подаються на одні і ті ж виводи корпуса ВІС почергово. Подача адреса рядка супроводжується відповідним стробом RAS, а друга стовпця – стробом CAS. Причиною мультиплексування адресів є зменшення числа виводів корпуса зменшення площі структури ЗП та збільшення швидкодії. Так, наприклад, ЗП з організацією 16Мх1 має 24 – розрядний адрес, а мультиплексування дозволя скоротити число ліній на 12. На мал. 8 показана часова діаграма та зовнішня організація динамічних ОЗП з мультиплексуванням. Таким чином, правильне поєднання у виборі архітектури, організації, структури і субмікронно технології формування топології запам’ятовуючих елементів дозволяє зменшити площу, споживану потужність, підвищити швидкодію та радіаційну стійкість ВІС пам’яті адресного типу, понизити час їх вибірки до рівня 10-30 нс, збільшити нтеграцію схем пам’яті до 1-64 М.

Малюнок 8. Часові діаграми динамічного ОЗП з мультиплексуванням шини адресу а) та його зовнішня організація б).

1.2 Представлення даних в ЕОМ

Подання (кодування) даних.

Щоб працювати з даними різних видів, необхідно уніфікувати форму їхнього подання, а це можна зробити за допомогою кодування. Кодуванням ми займаємося досить часто, наприклад, людина мислить досить розпливчастими поняттями, і, щоб донести думка від однієї людини до іншої, застосовується мова. Мова - це система кодування понять. Щоб записати слова мови, застосовується знову ж кодування - абетка. Проблемами універсального кодування займаються різні галузі науки, техніки, культури. Згадаємо, що креслення, ноти, математичні викладення є теж деяким кодуванням різних інформаційних об'єктів. Аналогічно, універсальна система кодування потрібно для того, щоб велика кількість різних видів інформації можна було б обробити на комп'ютері.

Підготовка даних для обробки на комп'ютері (подання даних) в інформатиці має свою специфіку, пов'язану з електронікою. Наприклад, ми хочемо проводити розрахунки на комп'ютері. При цьому нам доведеться закодувати цифри, якими записані числа. На перший погляд, представляється цілком природним кодувати цифру нуль станом електронної схеми, де напруга на деякому елементі буде дорівнює 0 вольтів, цифру одиниця - 1 вольтів, двійку - 2 вольтів і т.д., дев'ятку - 9 вольтів. Для запису кожного розряду числа в цьому випадку буде потрібно елемент електронно схеми, що має десять станів. Однак елементна база електронних схем має розкид параметрів, що може привести до появи напруги, скажемо 3,5 вольт, а воно може бути витлумачені і як трійка і як четвірка, тобто буде потрібно на рівн електронних схем "пояснити" комп'ютеру, де закінчується трійка, а де починається четвірка. Крім того, прийде створювати досить непрості електронн елементи для виробництва арифметичних операцій із числами, тобто на схемному рівні повинні бути створені та б- . особи множення - 10 х 10 = 100 схем таблиця додавання - теж 100 схем. Для електроніки 40-х рр. (час, коли з'явилися перші обчислювальні машини) це було непосильне завдання. Ще складніше виглядало б завдання обробки текстів, адже російський алфавіт має 33 букви. Очевидно, такий шлях побудови обчислювальних систем не заможний.

У той же час досить просто реалізувалися електронні схеми із двома стійкими станами: є струм - 1, немає струму - 0; є електричне (магнітне) поле 1, немає - 0. Погляди створювачів обчислювальної техніки були звернені на двійкове кодування як універсальну форму подання даних для подальшої г обробки їхніми засобами обчислювальної техніки. Передбачається, що дані розташовуються в деяких осередках, що представляють упорядковану сукупність із двійкових розрядів, а розряд може тимчасово містити один зі станів - 0 або 1. Тоді . групою із двох двійкових розрядів (двох біт) можна закодувати 22 = 4 різні комбінації кодів (00, 01, 10, 11); аналогічно, три ц біти дадуть 23 = 8 комбінацій, вісім біт або 1 байт - 28 = 256 і т.д. .

Отже, внутрішня абетка комп'ютера дуже бідна, містить усього два символи: 0, 1, тому й виникає проблема подання . усього різноманіття типів даних - чисел, текстів, звуків, графічних зображень, відео й ін. - тільки цими двома символами, з метою подальшої обробки засобами обчислювальної техніки. Питання подання деяких типів даних ми розглянемо у наступних параграфах.

Подання чисел в двійковому коді

Існують різні способи запису чисел, наприклад: можна записати число у вигляді тексту - сто двадцять три; римські системи числення - CXXІІІ; арабської – 123.

Системи числення.

Сукупність прийомів запису й найменування чисел називається системою числення.

Числа записуються за допомогою символів, і по кількості символів, використовуваних для запису числа, системи числення підрозділяються на позиційні й непозиційні. Якщо для запису числа використається нескінченна безліч символів, то система числення називається непозиційної. Прикладом непозиційної системи числення може служити римська. Наприклад, для запису числа один використається буква Й, два й три виглядають як сукупності символів ІІ, ІІІ, але для запису числа п'ять вибирається новий символ V, шість - VІ, десять - уводиться символ - X, сто - С, тисяча - М т.д. Нескінченний ряд чисел зажадає нескінченного числа символів для запису чисел. Крім того, такий спосіб запису чисел приводить до дуже складних правил арифметики.

Позиційн системи числення для запису чисел використають обмежений набір символів, називаних цифрами, і величина числа залежить не тільки від набору цифр, але й від того, у якій послідовності записані цифри, тобто від позиції, займаною цифрою, наприклад, 125 й 215. Кількість цифр, використовуваних для запису числа, називається підставою системи числення, надалі його позначимо q.

У повсякденному житті ми користуємося десятковою позиційною системою числення, q = 10, тобто використається 10 цифр: 0 12 3 4 5 6 7 8 9.

Розглянемо правила запису чисел у позиційній десятковій системі числення. Числа від 0 до 9 записуються цифрами, для запису наступного числа цифри не існує, тому замість 9 пишуть 0, але левее нуля утвориться ще один розряд, називаний старшим, де записується (додається) 1, у результаті виходить 10. Потім підуть числа 11, 12, але на 19 знову молодший розряд заповниться й ми його знову замінимо на 0, а старший розряд збільшимо на 1, одержимо 20. Далі за аналогією 30, 40...90 , 91, 92 ... до 99. Тут заповненими виявляються два розряди відразу; щоб одержати наступне число, ми заміняємо обоє на 0, а в старшому розряді, тепер уже третьому, поставимо 1 (тобто одержимо число 100) і т.д. Очевидно, що, використовуючи кінцеве число цифр, можна записати кожне як завгодно велике число. Помітимо також, що виробництво арифметичних дій у десятковій систем числення досить просто.

Число в позиційній системі числення з підставою q може бути представлене у вигляд полінома по ступенях q. Наприклад, у десятковій системі ми маємо число:

123,45 = 1*102+ 2*101+ 3*100+ 4*10-1 + 5*10-2,

а в загальному виді це правило запишеться так (формула 1.):

X(q)= xn-1*qn-1+xn-2*qn-2 +..+ x1*q1+ x0*q0+ x-1*q-1+..+ x-m*q-m

тут X(q) - запис числа в системі числення з підставою q;

xi - натуральні числа менше q, тобто цифри; 

n - число розрядів цілої частини;

m - число розрядів дробової частини.  

Записуючи ліворуч праворуч цифри числа, ми одержимо закодованій запис числа в q-ичній системі числення (формула 2.):

X(q)= xn-1*xn-2*x1*x0* x-1* x-2* x-m

В нформатиці, внаслідок застосування електронних засобів обчислюваль-но техніки, велике значення має двійкова система числення, q = 2. На ранніх етапах розвитку обчислювальної техніки арифметичні операції з дійсними числами проводилися у двійковій системі через простоту їхньої реалізації в електронних схемах обчислювальних машин. Наприклад, таблиця додавання й таблиця множення будуть мати по чотирьох правила (табл. 1).

Таблиця 1. Правила таблиці додавання та таблиці множення

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.