скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Червячный одноступенчатый редуктор

- под полумуфту; .

2-я ступень вала (под уплотнение крышки с отверстием и подшипник):

, где


t=2,8- высота буртика (определяется в зависимости от диаметра ступени d1). (стр.109, примечание 1, Ш.)

.

3-я ступень вала (под шестерню):

, где

r=3- координаты фаски подшипника (определяется в зависимости от диаметра ступени d1). (стр.109, примечание 1, Ш.)

l3 определить графически на эскизной компоновке. (стр.116, 7.5, п.5, Ш.)

4-я ступень вала (под подшипник):

d4=d2=60

l4=T=21, где

T- ширина подшипника. (стр.414, табл.К29, Ш.) (определяется в зависимости от диаметра ступени d1, лёгкая серия (7209)).

5-я стуень(упорная или под резьбу)

, где

f- фаска ступицы. (определяется в зависимости от диаметра ступени d1). (стр.109, примечание 1, Ш.)

l5 определить графически. (стр.116, 7.5, п.5, Ш.)

Предварительный выбор подшипников качения. (стр.111, табл.7.2, Ш.)

а) Вал- червяк.

Конические роликовые типа 7000, средняя серия, схема установки-3 (враспор).

Основные параметры подшипников (ГОСТ 333- 79):

типоразмер 7307;

геометрические размеры, мм:

d1=35, D=80,T=22,75, где D- диаметр наружного кольца подшипников.

Cr=54- динамическая грузоподъёмность, кН;

C0r=38- статическая грузоподъёмность, кН.

е = 0,32

б) Вал колеса.

Конические роликовые типа 7000, лёгкая серия, схема установки-3 (враспор).

Основные параметры подшипников (ГОСТ 333- 79): типоразмер 7211; геометрические размеры, мм: d1=55, D=100,T=22,75 где D- диаметр наружного кольца подшипников; Cr=65- динамическая грузоподъёмность, кН; C0r=46- статическая грузоподъёмность, кН. ; е = 0,41

Таблица 4. Параметры ступеней валов и подшипников.

Вал Размеры ступеней, мм Подшипники
d1 d2 d3 d4 типоразмер d·D·T, мм Cr, кН C0r, кН
l1 l2 l3 l4
Б 3,5 40 46 40  7307 35·80·22,75 54 38
45 45 212 18,5
Т 55 60 72 60  7211 55·100·22,75 65 46
54,8 62,5 85 21

6. Компоновка. (стр.117, 72-73, 414 (табл.К29), Ш.)

1) Для предотвращения задевания поверхностей вращающихся колёс за внутренние стенки корпуса контур стенок провести с зазором x=10 мм;

2) (мм), где

d, D, T- геометричиские размеры подшипников; e- коэффициент влияния осевого нагружения.

3) Расстояние y между дном корпуса и поверхностью колёс или червяка для всех типов редукторов принять y³4x=40 мм;

4) S=0,2D=16 (мм);

5) Радиусы закруглений зубьев:

(мм);

 (мм);

6) (мм);

7)  (мм).


7. Нагрузки валов редуктора

Определение сил в зацеплении закрытых передач.

На червяке:

Ft 1==(H) – окружная сила в зацеплении.

FR 1=FR 2=Ft 2tga=(H) – радиальная сила в зацеплении.

Fa1=Ft 2=4336 (H), где a=200 (угол зацепления.) – осевая сила в зацеплении.

На колесе:

Ft 2=(H) – окружная.

Fr 2=Ft 2tga=1561 (H) – радиальная.

Fa 2=Ft 1=2662,5 (H) – осевая.

Определение консольных сил.

FM 1= (H) – на валу червяка.

FM 2= (H) – на валу колеса.


8.Расчетная схема валов редуктора.(Шейнблит, стр.126)

lб=236- расстояние между точками приложения реакций в опорах подшипников вала-червяка,мм

lт=101 - расстояние между точками приложения реакций в опорах вала-колеса,мм.

lм=9 мм, lоп=79 мм, - расстояние между точками приложения консольной силы и реакции смежной опоры подшипника.

Определение реакций в опорах подшипников. Построение эпюр изгибающих и крутящих моментов (вал-червяк).

.Вертикальная плоскость.

А) определить опорные реакции, Н.

åМ3=0,

Ray lб + Fa1d1/2 - Fr1 l б/2 =0,

Ray =

åM1=0,

Rby lб - Fr1 lб/2 – Fa1 d1/2 =0,

Rby = .

Проверка: åу =0,

Rby – Fr1 + Ray =0, 1368 + 193 - 1561 =0.

б) строим эпюру изгибающих моментов относительно оси х, в характерных сечениях 1…3, Н м.

Мх1=0,

Мх4= Ray lб/2·103= 22,8

Mx3=0,

Mx2= Rby lб/2·103= 161,4

Горизонтальная плоскость.

а)определяем опорные реакции, Н.

åМ3=0,

-Fm (lm+ lб) + Ft1 lб/2 + Rax lб=0,

Rax=

åM1=0,

Rbx lб – Ft1 lб/2 – Fm1 lm=0,

Rbx=

åx=0, -Rax + Rbx – Ft1 + Fm1=0, 1135,4 – 2899,9 +2662,5- 898= 0.

б) строим эпюру изгибающих моментов, относительно у, в характерных сечениях 1…4, Н м.

Му1=0,

Му2= Rаx lб/2·=-108

My4=0,

My3= Rаx lб/2·– Ft1 lб/2= - 530

Строим эпюру крутящих моментов, Н м Мк = Мz =Т1=82,5

Определяем суммарные радиальные реакции, Н.

RA =


RB = .

Определяем суммарный изгибающий момент в наиболее нагруженном сечении вала ,Н·м.

М2 =

Определение реакций в опорах подшипников. Построение эпюр изгибающих и крутящих моментов (вал-колеса).

Вертикальная плоскость.

А) определяем опорные реакции, Н

åМ3 =0,

-Rаy lт + Fa2 d2/2 – Fr2 lт /2 =0,

Rаy =

åM1 =0,

Fr2 lт /2 + Fa2 d2 /2 – Rвy lТ =0,

Rвy =

Проверка: åу =0,

-Rвy + Fr2 + Rаy =0, -4154,8 + 1561 + 2593,8 =0.

б) строим эпюру изгибающих моментов относительно оси х, в характерных сечениях 1...3, Н м.

Мх1 =0,

Мх3 =–Rаy lТ /2 = 131

Mx2 =0,

Мx4 =Rвy lТ /2 =209,8

Горизонтальная плоскость.

А) определяем опорные реакции, Н.

åМ3 =0,

-Fm (lоп + lТ) + Rаx lТ + Ft2 lТ /2 = 0,

Rаx =

åМ1 =0,

-Fm lоп – Ft2 lТ /2 + Rвx lТ =0,

.

Проверка: åх =0,

Fm – Rаx + Rвx – Ft2 =0, 5890 – 833,5 – 4336 + 6773,5 = 0.

б) строим эпюру изгибающих моментов относительно оси у в характерных сечениях 1...4, Н м.

My1 =0,

My3 = Fm lоп = - 465

My4 =0,

My2 = - Rаx lт /2 = - 342

Строим эпюру крутящих моментов, Н м Мк =Мz =Т2 =555

Определяем суммарные радиальные реакции, Н.

Rа =

Rв =

Определяем суммарный изгибающий момент, Н м.

М2 =


9. Расчётная схема валов редуктора (Ш. стр. 126)

Построение эпюр изгибающих и крутящих моментов (вал-червяк)

Таблица 4. Определение эквивалентной нагрузки.

Определяемая величина. Обозначение. Конические роликовые подшипники.
Быстроходный вал. Тихоходный вал.
Коэффициент радиальной нагрузки. X 0,4 0,4
Коэффициент осевой нагрузки. Y 1,66 1,45
Коэффициент влияния осевого нагружения. e 0,32 0,41
Осевая составляющая радиальной нагрузки подшипника, Н. RS

RS1=0,83eRr1=

=0,83·0,32·1561=414,6

RS2=0,83eRr2=

=0,83·0,41·1561=531,2

Осевая нагрузка подшипника, Н. Ra Ra1=RS1=414,6

Ra2=RS1+Fa2=

=414,6 +2662,5=3077

Радиальная нагрузка подшипника, Н. Rr Rr1=RB=3206 Rr2=9309
Осевая сила в зцеплении, Н. Fa Fa1=4336 Fa2=2662,5
Статическая грузоподъёмность, Н. C0r C0r1=46 C0r2=38
Коэффицицент безопасности. Кб Кб=1,2 Кб=1,2
Температурный коэффициент. КТ КТ=1 КТ=1
Коэффициент вращения. V V=1 V=1

10. Проверочный расчёт подшипников

Определение эквивалентной динамической нагрузки. (стр.128 (табл.9.1), Ш.)

RE=(XVRr+YRa)·КбКТ при ;

RE=VRrКбКТ при , где

RE- эквивалентная динамическая нагрузка, Н.

а) расчёт эквивалентной динамической нагрузки для быстроходного вала:

< => рассчитываем RE по следующей формуле:

RE1= VRr1КбКТ=1·3206·1,2·1=3847,2

б) расчёт эквивалентной динамической нагрузки для тихоходного вала:

<e => рассчитываем RE по следующей формуле:

RE1= VRr2КбКТ=1·9309·1,2·1=11170,8

Рассчитать динамическую грузоподъёмность Сrp. (стр.128 Ш.)

Базовая динамическая грузоподъемность подшипника представляет собой постоянную радиальную нагрузку, которую подшипник может воспринять при базовой долговечности, составляющей 106 оборотов внутреннего кольца.

Пригодность подшипников определяется сопоставлением расчетной динамической нагрузки Сrp, с базовой Сr, или базовой долговечности L10h ,с требуемой Lh по условиям Crp или L10h

а) расчет динамической грузоподъёмности для быстроходного вала.

Crp1= Re (Н).

Сrp1< Cr1

б) расчет динамической грузоподъемности для тихоходного вала.

Сrp2= (H).

Crp2< Cr2

Рассчитать базовую долговечность L10h (cтр 128 Ш.)

а) расчет базовой долговечности для быстроходного вала.

L10h1=(ч)

L10h1> Lh

б) расчет базовой долговечности для тихоходного вала.

L10h2= (ч)

L10h2> Lh


Так как в результате расчетов выдержано условие Сrp< Cr и, как следствие, L10h > Lh ,то предварительно выбранные подшипники пригодны для конструирования подшипниковых узлов.


11. Проверка точности шпоночных соединений.(Чернавский стр.169 табл.8.9 )

Расчет напряжения смятия , Мпа.

Тихоходный вал

а) под колесом

, где

Т2- крутящий момент на тихоходном валу, Н/мм2.

d3 =72 – диаметр вала в месте установки шпонки, мм.

h =12 – высота шпонки, (ГОСТ 24071-80) ,мм.

t1 =7,5 – глубина паза вала (ГОСТ 24071-80) ,мм.

допускаемое напряжение ;при стальной ступице и спокойной нагрузке .

.

Шпонка 20´12´36 ГОСТ 23360-78.

б) под полумуфтой

, где

d1 =55,7 –диаметр вала в месте установки шпонки ,мм.

h =10 –высота шпонки ,мм.

t1 =6- глубина паза вала ,мм.

l=56 – длина шпонки ,мм.

Шпонка 16´10´56 ГОСТ 23360-78.

Быстроходный вал :

а) под полумуфту

 ,где

d1 =35- диаметр вала в месте установки шпонки ,мм .

h =8 –высота шпонки ,мм.

t1 =4 –глубина паза вала ,мм.

l =32 –длина шпонки ,мм.

Шпонка 10´8´32 ГОСТ 23360-78.

Проверка шпонок на срез.

Тихоходный вал.

 ,

Следовательно условие,  ,выполнено для обоих шпонок тихоходного вала.

Быстроходный вал.

,где

b =10 –ширина шпонки ,мм.

Следовательно условие  ,выполнено.

13. Уточнённый расчет валов. (Чернавский стр.383, 311.)

Уточнённый расчет состоит в определении коэффициентов запаса прочности s для опасных сечений и сравнении их с допускаемыми значениями . Прочность соблюдена при s≥.

Будем производить расчет для предположительно опасных сечений каждого из валов.

Проверочный расчёт быстроходного вала.(Чернавский стр.311, 383, 165)

Расчет на жесткость.

Приведенный момент инерции поперечного сечения червяка:

Стрела прогиба :

f=

Допускаемый прогиб :

.

Таким образом, жесткость обеспечена, так как выполнено условие  .

Определение коэффициента запаса прочности s.

Предел выносливости при симметирчном цикле изгиба:

σ-1=0,43σВ= 387 (Н/мм2).

Предел выносливости при симметричном цикле касательных напряжений:

τ –1=0,58σ-1=224,5 (Н/мм2).

Коэффициент запаса прочности:

, где

амплитуда и среднее напряжение отнулевого цикла:

τv= τm=;

 (мм3)- момент сопротивления при кручении;

 (Н/мм2).

Принимаем kτ=1,37- эффективный коэффициент концентрации касательных напряжений (табл.8.2, Ч.), ετ=0,7- масштабный фактор для касательных напряжений (табл.8.8, Ч.), ψτ=0,1 (стр.166, Ч.);

.

Коэффициент запаса прочности по нормальным напряжениям:

, где

 (Н/мм2),

ψσ=0,2 (стр.163, Ч.),

σv=Н/мм2 (стр.162, Ч.),

kσ=1,8- эффективный коэффициент концентрации нормальных напряжений (табл.8.2, Ч.),

εσ=0,88- масштабный фактор для нормальных напряжений;

;

Результирующий коэффициент запаса прочности:

>[s], где [s]=1,7.

Проверочный расчёт тихоходного вала.

Предел выносливости при симметричном цикле изгиба:

σ-1=0,43σВ= 301 (Н/мм2).

Предел выносливости при симметричном цикле касательных напряжений:


τ –1=0,58σ-1=174,5 (Н/мм2).

Коэффициент запаса прочности по касательным напряжениям:

, где

амплитуда и среднее напряжение цикла касательных напряжений:

τv= τm=;

 (мм3);

 Н/мм2).

Принимаем kτ=1,6 (табл.8.5, Ч.), ετ=0,7 , (табл.8.8, Ч.), ψτ=0,1 (стр.166, Ч.),

.

Коэффициент запаса прочности по нормальным напряжениям:

, где


 (Н/мм2), kσ=1,75 (табл.8.2, Ч.), εσ=0,82;

Амплитуда нормальных напряжений изгиба:

, где

M3- суммарный изгибающий момент в сечении;

Wнетто- момент сопротивления изгибу;

 (мм3);

 (Н/мм2);

;

Результирующий коэффициент запаса прочности:

>[s], где [s]=1,7.

Проверочные расчёты на прочность повсеместно дают удовлетворительные результаты.


14. Смазывание. Смазочные устройства. (стр.240, Ш.)

Смазывание червячных зацеплений и подшипников применяют в целях защиты от коррозии, снижения коэффициента трения, уменьшения износа, овода тепла и продуктов износа от трущихся поверхностей, снижения шума и вибрации.

Способ смазывания

Для редукторов общего назначения применяют непрерывное смазывание жидким маслом картерным непроточным способом. Этот способ применяют для червячных передач с цилиндрическим червяком смазывание окунанием допустимо до скорости скольжения 10 м/с.

Выбор сорта масла. (табл.10.29, Ш.)

Выбор сорта масла зависит от расчётного контактного напряжения в зубьях и фактической окружной скорости колёс И-Т-Д-220,

И- индустриальное;

Т- для тяжело нагруженных узлов;

Д- масло с антиокислительными, антикоррозийными, противоизносными, противозадирными присадками;

220- класс кинематической вязкости.

Кинематическая вязкость при 400С, мм2/с (сСт)- 200.

Определение количества масла.

Для одноступенчатых редукторов при смазывании окунанием объём масляной ванны определяют из расчёта 0,4…0,8 л масла на 1 кВт передаваемой мощности. Имеем P=11 кВт => объём масляной ванны 6,6 л.

Определение уровня масла m£hМ£0,25d2.

При нижнем расположении червяка hМ=(0,1…0,5) d1, при этом hМ min=2,2m

hМ=0,3 d1=0,3·64=19,2 (мм);


hМ min=2,2·8=17,4 (мм).

Контроль уровня масла.

Уровень масла, находящегося в корпусе редуктора, контролируют различными маслоуказателями. Выбираем жезловые маслоуказатели


Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.