скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКонтрольная работа: Вычислительные машины

Предлагаемый стандарт NGIO - преемник шин PCI и PCI X, в поддержку которых высказались все основные производители аппаратного обеспечения. Большинство аналитиков согласны, что существующая архитектура шины PCI уже не сможет адекватно поддерживать работу более мощных приложений. Современные процессоры Xeon компании Intel позволяют передавать данные со скоростью около 800 Мбит/с, перспективный 32-разрядный процессор Foster будет рассчитан на пропускную способность 3,2 Гбит/с, а производительность процессора McKinley может оказаться еще выше.

7.   Преимущества сетей перед автономными компьютерами

Структурированная кабельная система это наиболее современное решение проблемы соединения многочисленных видов телекоммуникационного и компьютерного оборудования предприятия.

Но, поскольку современность, вообще говоря, не есть технико-экономическая категория, мы не склонны утверждать, что всегда и везде следует применять именно СКС. Действительно, это достаточно дорогая вещь, а всякие солидные затраты должны быть столь же солидно обоснованы.

Если, к примеру, вы снимаете под офис некое временное помещение, заранее зная, что через год-полтора его покинете, то вполне можно обойтись временными же средствами. Также нелепо рассуждать об СКС, если специфика вашей компании такова, что больше двух-трех компьютеров ей никогда не понадобится.

Если же предприятие достаточно крупное, устраивается в помещении или здании надолго, имеет большое количество автоматизированных рабочих мест с телефонами, бесперебойность работы информационной системы жизненно необходима, то СКС становится единственно верным решением.

В самом деле, можно воспользоваться гибкими пластиковыми шлангами для полива огорода на даче, но никто не станет делать на базе таких шлангов водопровод в многоэтажном доме, хотя это, наверное, было бы дешевле. Нормальная же кабельная сеть даже более важна для большинства предприятий, чем водопровод, так как отсутствие в течение некоторого времени воды не приводит к столь серьезным последствиям, как «падение» компьютерных сетей и потеря информацинной связи с внешним миром.

К сожалению, почти всегда за надежность работы информационной системы и за финансовые вложения в нее отвечают разные люди. И желание сэкономить сегодня часто оборачивается существенно большими потерями завтра. Даже не ЧП с информационной системой, а, казалось бы, незначительное изменение в размещении подразделений предприятия может вызвать довольно объемные «неожиданные» затраты.

К тому же в старых, особенно больших государственных и бывших государственных предприятиях компьютерными сетями и телефонией часто занимаются разные службы, которые не только не сотрудничают, но конкурируют друг с другом. Замена этих отдельных кабельных сетей единой и надежной сетью навряд ли может вызвать энтузиазм у людей, зарабатывающих свой хлеб ремонтом этого устаревшего и запутанного хозяйства, в котором никто, кроме них самих, не в состоянии разобраться.

Поэтому далее мы очень кратко изложим наиболее существенную информацию об СКС, чтобы лица, принимающие финансовые решения, могли оценить не только капитальные затраты на кабельную систему, но и перспективы ее эксплуатации.

СКС является альтернативой традиционного подхода, предполагающиего наличие для каждой подсистемы собственного автономного каблирования, привязанного, кроме того, к неизменной структуре предприятия.

Структурированная кабельная система является частью единой инженерной инфраструктуры здания или комплекса помещений, обеспечивая подключение любого стандартного оборудования, работу любого стандартного приложения и универсальный сервис.

Физически СКС представляет собой иерархическую систему, включающую в себя структурные подсистемы и состоит из полного набора медных и оптических кабелей, кросс-панелей, соединительных шнуров, разъемов, модульных гнезд, информационных розеток и вспомогательного оборудования. Эти элементы представляют из себя единую систему – “конструктор” – позволяющую реализовать любую необходимую конфигурацию сети.

Преимущества СКС перед обычными кабельными системами:

Универсальность. Для обмена данными в ЛВС, организации телефонной сети, сети передачи видеоинформации или сигналов от датчиков охранных систем используется единая кабельная система. Использование универсальных розеток на рабочих местах позволяет подключать к ним различные виды оборудования.

Гибкость и перспективность (futureproof). СКС позволяет легко и быстро изменять конфигурацию любой подключенной к ней системы и перестраивать их в соответствии с перемещениями, связанными, например, с изменениями структуры управления предприятия или переездами отдельных подразделений или сотрудников. СКС позволяет вносить изменения и наращивать возможности подсистем, совершенно не затрагивая собственно кабели.

Высокая надежность. Грамотно спланированная СКС устойчива к внештатным ситуациям и гарантирует высокую надежность в течение многих лет.

Единая СКС гарантирует полное отсутствие взаимовлияний и завязок между сетями различного назначения.

Минимум обслуживающего персонала. Один администратор может контролировать и обеспечивать безопасность работы всей системы. Ввиду чрезвычайно высокой надежности вмешательство его бывает необходимо только в случае реконфигурации сети. Поэтому нет необходимости держать такого человека как самостоятельную штатную единицу. Гораздо выгоднее в этих редких случаях обратиться к компании, строившей сеть.

Локальные сети позволяют обеспечить:

Разделение файлов. ЛВС позволяет многим пользователям одновременно работать с одним файлом, находящемся на файл сервере.

Передача файлов. Возможность быстрого копирования файлов любого размера с одной машины на другую.

Доступ к информации и файлам. ЛВС позволяет запускать прикладные программы с любой из рабочих станций, где бы она ни была расположена.

Разделение прикладных программ. ЛВС позволяет нескольким пользователям одновременно использовать одну и ту же копию программы.

Одновременный ввод данных в прикладные программы.

Разделение периферийного оборудования. Возможность использования одного устройства несколькими пользователями со своих персональных компьютеров.

На текущем этапе развития объединения компьютеров сложилась ситуация когда имеется большое количество компьютеров работающих отдельно от всех остальных компьютеров и не имеющих возможность гибко обмениваться с другими компьютерами информацией. Невозможно создание общедоступной базы данных, накопление информации при существующих объемах и различных методах обработки и хранения информации. При имеющейся возможности подключения к глобальным вычислительным сетям типа Internet необходимо осуществить подключение к информационному каналу не одной группы пользователей, а всех пользователей с помощью объединения в глобальные группы.

8.   Прозрачность сети

Прозрачность (transparency) сети достигается в том случае, когда сеть представляется пользователям не как множество отдельных компьютеров, связанных между собой сложной системой кабелей, а как единая традиционная вычислительная машина с системой разделения времени. Известный лозунг компании Sun Microsystems: «Сеть - это компьютер» - говорит именно о такой прозрачной сети.

Прозрачность может быть достигнута на двух различных уровнях - на уровне пользователя и на уровне программиста. На уровне пользователя прозрачность означает, что для работы с удаленными ресурсами он использует те же команды и привычные ему процедуры, что и для работы с локальными ресурсами. На программном уровне прозрачность заключается в том, что приложению для доступа к удаленным ресурсам требуются те же вызовы, что и для доступа к локальным ресурсам. Прозрачность на уровне пользователя достигается проще, так как все особенности процедур, связанные с распределенным характером системы, маскируются от пользователя программистом, который создает приложение. Прозрачность на уровне приложения требует сокрытия всех деталей распределенности средствами сетевой операционной системы.

Сеть должна скрывать все особенности операционных систем и различия в типах компьютеров. Пользователь компьютера Macintosh должен иметь возможность обращаться к ресурсам, поддерживаемым UNIX-системой, а пользователь UNIX должен иметь возможность разделять информацию с пользователями Windows 95. Подавляющее число пользователей ничего не хочет знать о внутренних форматах файлов или о синтаксисе команд UNIX. Пользователь терминала IBM 3270 должен иметь возможность обмениваться сообщениями с пользователями сети персональных компьютеров без необходимости вникать в секреты трудно запоминаемых адресов.

Концепция прозрачности может быть применена к различным аспектам сети. Например, прозрачность расположения означает, что от пользователя не требуется знаний о месте расположения программных и аппаратных ресурсов, таких как процессоры, принтеры, файлы и базы данных. Имя ресурса не должно включать информацию о месте его расположения, поэтому имена типа mashinel : prog.c или \\ftp_serv\pub прозрачными не являются. Аналогично, прозрачность перемещения означает, что ресурсы должны свободно перемещаться из одного компьютера в другой без изменения своих имен. Еще одним из возможных аспектов прозрачности является прозрачность параллелизма, заключающаяся в том, что процесс распараллеливания вычислений происходит автоматически, без участия программиста, при этом система сама распределяет параллельные ветви приложения по процессорам и компьютерам сети. В настоящее время нельзя сказать, что свойство прозрачности в полной мере присуще многим вычислительным сетям, это скорее цель, к которой стремятся разработчики современных сетей.

9.   Управляемость сети

Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети. В идеале средства управления сетями представляют собой систему, осуществляющую наблюдение, контроль и управление каждым элементом сети - от простейших до самых сложных устройств, при этом такая система рассматривает сеть как единое целое, а не как разрозненный набор отдельных устройств.

Хорошая система управления наблюдает за сетью и, обнаружив проблему, активизирует определенное действие, исправляет ситуацию и уведомляет администратора о том, что произошло и какие шаги предприняты. Одновременно с этим система управления должна накапливать данные, на основании которых можно планировать развитие сети. Наконец, система управления должна быть независима от производителя и обладать удобным интерфейсом, позволяющим выполнять все действия с одной консоли.

Решая тактические задачи, администраторы и технический персонал сталкиваются с ежедневными проблемами обеспечения работоспособности сети. Эти задачи требуют быстрого решения, обслуживающий сеть персонал должен оперативно реагировать на сообщения о неисправностях, поступающих от пользователей или автоматических средств управления сетью. Постепенно становятся заметны более общие проблемы производительности, конфигурирования сети, обработки сбоев и безопасности данных, требующие стратегического подхода, то есть планирования сети. Планирование, кроме этого, включает прогноз изменений требований пользователей к сети, вопросы применения новых приложений, новых сетевых технологий и т. п.

Полезность системы управления особенно ярко проявляется в больших сетях: корпоративных или публичных глобальных. Без системы управления в таких сетях нужно присутствие квалифицированных специалистов по эксплуатации в каждом здании каждого города, где установлено оборудование сети, что в итоге приводит к необходимости содержания огромного штата обслуживающего персонала.

В настоящее время в области систем управления сетями много нерешенных проблем. Явно недостаточно действительно удобных, компактных и многопротокольных средств управления сетью. Большинство существующих средств вовсе не управляют сетью, а всего лишь осуществляют наблюдение за ее работой. Они следят за сетью, но не выполняют активных действий, если с сетью что-то произошло или может произойти. Мало масштабируемых систем, способных обслуживать как сети масштаба отдела, так и сети масштаба предприятия, - очень многие системы управляют только отдельными элементами сети и не анализируют способность сети выполнять качественную передачу данных между конечными пользователями сети.

10.      Способы передачи данных по сетям

От первых систем передачи данных к системе Х.25

Общая структура системы передачи данных показана на рис. 1. Она включает канал передачи данных, на каждом конце которого находятся линейное устройство передачи данных (ЛУПД) и оконечное устройство передачи данных (ОУПД). В официальном издании рекомендаций бывшего МККТТ на английском языке приняты названия Data Circuit terminating Equipment (DCE) и Data Terminal Equipment (DTE). В русском переводе упомянутого документа использованы термины: аппаратура окончания канала данных (АКД) и оконечное оборудование данных (ООД), которые представляются не вполне удачными с точки зрения традиций русскоязычной научно-технической терминологии.

Телетайпы и другие терминалы с клавиатурой, снабженные устройствами отображения или не имеющие таковых, системы дистанционного ввода заданий с устройствами считывания, печатающие устройства и сканеры, автоматизированные лабораторные установки с различными физическими датчиками, персональные или любые другие ЭВМ с разнообразными периферийными устройствами - все они охватываются понятием ОУПД при условии, что включены для работы в сеть связи.

Задачей ЛУПД является также преобразование сигналов. Если канал передачи данных аналоговый, то данные от терминала поступают на модем (модулятор-демодулятор). Если же канал передачи данных является цифровым, то двоичные данные преобразуются в стандартную форму сбалансированного кода для передачи по линии сигналами, не содержащими составляющей постоянного тока. Другой функцией ЛУПД является выполнение совместно с ОУПД процедур установления, поддержания и прекращения соединений между передающим и приемным концами.

Канал передачи данных - это любая передающая среда. По способу его работы различают симплексную, полудуплексную и дуплексную связь (рис. 2). При симплексной связи, показанной на рис. 2, а, данные всегда перемещаются в одном направлении, как показано сплошными линиями. При этом не исключается возможность передачи в противоположном направлении подтверждений со стороны приемного конца, которые показаны штриховыми линиями.

При полудуплексной связи (рис. 2, б) данные передаются в обоих направлениях, но попеременно. Термин "полудуплексная связь", означающий попеременное применение симплексной связи то в одном, то в другом направлении, не применялся в технике связи до его введения специалистами по вычислительной технике.

При дуплексной связи, как показано на рис. 2, в, данные передаются в обоих направлениях одновременно. При этом как при полудуплексной, так и при дуплексной связи также передаются подтверждения, показанные штриховыми линиями. Физически для симплексной или полудуплексной работы должна использоваться либо одна пара проводов, по которой сигналы передаются в обоих направлениях, либо две пары проводов, по каждой из которых сигналы передаются в одном направлении. Первый способ применяется, когда в тракте нет усилителей, и называется двухпроводным соединением. Второй способ применяется при наличии усилителей и называется четырехпроводным соединением. Дуплексная работа требует четырехпроводного соединения.

Если работа передающего и приемного концов тракта передачи данных полностью согласована во времени, то на приемном конце каждый переданный символ может быть выделен. В противном случае символы выделяются с помощью специальных разделительных знаков: стартового (пробела) и стопового (посылки). Первый способ называется синхронной передачей, второй - асинхронной. В терминалах передачи данных со скоростью до 1,2 кбит/с, как и в телетайпах, применяют асинхронную передачу. В терминалах же со скоростью передачи 2,4 кбит/с и выше применяется синхронная передача.

Широкое применение систем передачи данных началось в 1960-х гг. как по телефонным сетям общего пользования, так и по специализированным сетям. Главные недостатки систем передачи данных по телефонным сетям состоят в том, что для таких систем требуются модемы, а время установления соединения составляет по меньшей мере 15 с, а обычно - значительно больше. Кроме этого, качество передачи в этом случае зависит от характеристик телефонных каналов. Они могут меняться от соединения к соединению и подвергаться воздействию помех, в частности, от работы коммутационных приборов на телефонных станциях электромеханических систем. Некоторое улучшение качества передачи может быть достигнуто при использовании арендованных телефонных линий, но для них также требуются модемы. За выигрыш же возможного улучшения качества передачи приходится расплачиваться заботами о сокращении простоев линий. В ходе таких забот во многих странах разрабатывались и применялись схемы коллективного использования арендованных линий путем формирования групп абонентов, подключения терминалов в разных точках трассы абонентской линии, мультиплексирования, применения других методов.

Одновременно велось создание специализированных сетей. При этом были испытаны различные структуры схем и различные методы коммутации. Среди наиболее распространенных структур встречаются узловые (звездообразные), кольцевые, полносвязные, а также схемы типа шины. Для более сложных структур, которые могут включать в качестве составных частей перечисленные схемы, необходимо применение узлов коммутации. На основании анализа эффективности различных методов передачи данных в начале 1970-х гг. были определены области предпочтительного применения различных систем передачи. Они показаны на графике рис. 3. Как видно из графика, выбор предпочтительного способа передачи зависит как от общего объема передачи (нагрузки), так и от средней длины передаваемых сообщений. Например, применение коммутируемой телефонной сети оправдано лишь при небольших нагрузках. При умеренных же нагрузках, но не очень длинных сообщениях, предпочтительнее сеть с пакетной коммутацией. Именно поэтому во многих странах мира созданы специализированные сети передачи данных общего пользования с коммутацией пакетов. Технические средства для таких сетей быстро совершенствовались. В 1976 г. МККТТ была принята рекомендация Х.25. В 1980 и 1984 гг. она подверглась переработкам. Рекомендация Х.25 касается соединения терминалов передачи данных, ЭВМ и других пользовательских систем с сетями передачи данных и описывает протоколы взаимодействия различных устройств. Протокол Х.25 организован по трехуровневой системе (об общих принципах организации многоуровневых систем передачи и обработки информации см. статью автора "О единой концепции информационного обеспечения перевозок", "Железнодорожный транспорт", 1992, № 7, стр. 23-27).

На нижнем (физическом) уровне устанавливаются стандарты на механические разъемы и электрические характеристики линий связи, на передаваемые по ним цифровые сигналы, включая сигналы занятия линии и ее освобождения. Эти стандарты описаны в рекомендации Х.21 и за недостатком места здесь не рассматриваются. На втором (канальном) уровне определяются требования к средствам передачи информации по участку цифрового канала между двумя соседними узлами в виде блоков данных, называемых кадрами.

При этом предусматривается возможность обнаружения ошибок в кадре и их исправления после автоматического переопроса и повторной передачи искаженного кадра. Указанные функции определяются применительно ко всему цифровому потоку, передаваемому по данному участку, и не зависят от того, каким пользователям и по каким адресам передаются отдельные сообщения, входящие в общий поток.

На третьем (сетевом) уровне определяются требования к системе передачи информации в виде блоков данных, называемых пакетами. Помимо полезной информации, пакеты несут управляющую информацию об адресах отправителя и получателя, порядковую нумерацию и некоторые другие служебные данные. Описанное разделение функций позволяет в одном физическом цифровом канале создать большое число логических (так называемых виртуальных) каналов.

Перед тем как перейти к рассмотрению особенностей второго и третьего уровней сети Х.25, уточним некоторые понятия. Будем называть блоком данных произвольный набор символов, предназначенных для передачи по каналу связи. В зависимости от состава (формата) блока, а также его назначения в конкретных случаях блокам могут быть присвоены разные названия. Например, блок данных, передаваемых по СПД общеканальной телефонной сигнализации № 7, называют сигнальной единицей. В этой статье рассматриваются блоки данных, называемые кадрами и пакетами, а в следующей беседе, посвященной технологии АТМ, будут рассматриваться блоки данных, называемые ячейками.


 

Список использованной литературы

1.         Акулов О. А., Медведьев Н. В. Информатика: базовый курс. М.: Омега-Л, 2006.

2.         Дорот В. А., Новиков Ф. Н. Толковый словарь современной компьютерной лексики. 2-е изд. СПб.: BHV, 2001.

3.         Лесничая И.Г. Информатика и информационные технологии. Учебное пособие. М.: Издательство Эксмо, 2007

4.         Попов В.Б. Основы компьютерных технологий. М. : Финансы и статистика, 2002.

5.      А.В. Могилев, Н.И. Пак, Е.К. Хеннер. Информатика. М., 2000.

6.      И.П. Норенков, В.А. Трудоношин. Телекоммуникационные технологии. М., 2000.

7.      В.Н. Петров. Информационные системы. С-Пб., 2002.

8.      А.Я. Савельев. Основы информатики. М., 2001.


Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.