скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКонтрольная работа: Вторичная переработка зольной пыли для получения пуццолана

На опытной установке проведены испытания различных смесей зольной пыли и шлама сточных вод, включая сравнительные тесты с пылью без шлама. Параметры работы печи также изменялись. Зольная пыль, использованная в каждой смеси, сама была смесью зольных пылей из различных источников. Соотношения различных компонентов в смесях пылей были выбраны с целью достижения определенного процентного содержания потерь на обзоливание. В тестах 1 и 2 процентное содержание потерь на обзоливание составило 10 и 12,8% соответственно. Для всех тестов с 3 по 18 процентное содержание потерь на обзоливание в дозирующем смесителе 30, который придает интенсивное аксиальное и радиальное движение материалу вибратором с высокой скоростью смешения.

Смесь поступала в лотковый окомкователь 32 с диаметром 101 см и глубиной 16,5 см, вращающийся со скоростью порядка 15 - 20 об/мин под углом 45o - 50o к горизонтали. Сырые шарики из первого лоткового окомкователя 32 поступали во второй лотковый окомкователь 34 с аналогичными характеристиками, и сухие покрывающие материалы, если это необходимо, подавались во второй лотковый окомкователь. Пробы агломерированного материала со стадии окомкования собирались и анализировались на влажность, насыпную плотность, количество 45,7 см шариков во фракции, прочность на сжатие в сухом и влажном состоянии и калибр для определения качества полученных сырых шариков. Параметры сырых шариков полученных в различных опытах, приведены в табл. 8.

Сырые окатыши поступали в решетчатую сушилку 36, утилизирующую текущий вниз к плотным частицам теплообменника поток газа. Нагрузочное поперечное сечение сырых окатышей 27,9 см в ширину, 15,2 см в глубину с длиной активной сушки 1,22 м и скоростью решетки менялась от 2,54 до 10,1 см/мин. Температура сушки поддерживалась в зоне 150-200oC. Технологический поток газа регулировался для поддержания влажности в осушаемых шариках ниже 5%.

Высушенные окатыши поступали во вращающуюся обжиговую печь 38 с внутренним диаметром 57,8 см и длиной 3,96 м. Подача осуществлялась в том же направлении, что и зажигание во вращающейся печи, так чтобы поток технологического газа перемещался в одном направлении с потоком твердых частиц. В загрузочном конце печи входящие из сушилки окатыши сначала сушились и подогревались, некоторые органические составляющие испарялись, и начиналось удаление горючих веществ. В следующей зоне испарялись оставшиеся органические вещества, обжигались негорючие вещества в окатышах, и полностью завершалась головка слоя. В последней греющей зоне плотные твердые частицы и газ в течение определенного времени обеспечивают высокие температуры, гарантирующие полный обжиг и последующее затвердевание окатышей.

Две горелки для природного газа 40 и две воздушные фурмы 42 размещены на загрузочном конце. Вторая горелка не использовалась во всех опытах. Печь работала со скоростью 2-3,9 об/мин для обеспечения времени выдержки порядка 30 - 60 мин. Уклон печи составлял 1,04 см/м. В таблице 7 представлены скорость работы печи, расход природного газа и температуры в четырех точках от Т-1 до Т-4 по длине печи.

В таблице 8 представлены значения теплотворной способности смесей, используемых в каждом опыте и насыпная плотность шариков и полученного шарообразного продукта.

Шарообразный продукт из печи передавался во вращающийся холодильник 44, внутренний диаметр которого равен 38,1 см и длина равна 3,66 м.

Вращающийся холодильник с косвенным охлаждением охлаждал плотные частицы до температуры ниже 65oC. Косвенное охлаждение являлось результатом прохождения тепла через стенки кожуха к постоянно увлажняемой наружной поверхности. Уклон холодильника также составлял 1,04 см/м и его скорость поддерживалась постоянной и равной 6 об/мин для обеспечения времени выдержки около 30 мин. Полученный гранулированный продукт анализировался на насыпную плотность и результаты этих опытов приведены в таблице 8.

Полученный на опытной установке продукт удовлетворяет стандарту А ТМ для легковесных заполнителей бетона (марка СЗЗ0), для легковесных заполнителей блоков кирпичной кладки (марка С331) и легковесных заполнителей бетонной изоляции (марка С332). Эти стандарты обеспечивают максимальную насыпную плотность порядка 880-112,2 кг/м3, в зависимости от степени распределения заполнителя в смеси.


Глава 2. ПОЛУЧЕНИЕ ПУЦЦОЛАНА ИЗ ЗОЛЬНОЙ ПЫЛИ

Процесс, разработанный В. Дж. Хёрстом используется для мокрой переработки зольной пыли с получением из нее ряда продуктов, имеющих большую стоимость, чем исходная зольная пыль, в том числе углеродного концентрата, фракции сферических пористых частиц, концентрата железа, пуццолана повышенной прочности и инертного минерального наполнителя.

Схема процесса приведена на рис. 1. Электростатическую зольную пыль, в мокром или сухом виде, подают на сито 2, где задерживаются и удаляются частицы более крупные чем 50 меш. Здесь, в частности, происходит удаление больших кусков углерода и других агломерированных частиц. Минерал, проходящий через сито размером 50 меш, подается в глиномялку 5, в которую добавляют воду до получений содержания твердого вещества 55 % или выше. Далее материал проходит через серию кондиционирующих или смесительных резервуаров 7а—7г. К суспензии в резервуаре 7о добавляют керосин в количестве 0,9 кг на тонну зольной пыли, что облегчает отделение углерода на следующей стадии пенной флотации.

Зольная пыль контактирует с керосином в резервуарах 7а—7г в общей сложности в течение 30 мин или более. Добавление пенообразователей в последний из резервуаров 7г позволяет улучшить выделение углерода из смеси. Пенообразователь можно добавлять в количестве 150 г на тонну зольной пыли.

Кондиционированный материал, содержащий керосин и частицы пенообразователя, подается в параллельно соединенные флотаторы 9а, где частицы углерода всплывают и отделяются. Отделение проводят обычным методом пенной флотации с использованием воздуха. В флотаторы добавляют воду для получения содержания твердого вещества не более 25 %. В первом всплыве, который может составлять =;2,5 % от общей массы сырья, выделяется 75—80 % всего имеющегося углерода. Получаемый продукт может быть использован в виде сажи. Для получения товарного продукта можно проводить сушку или фильтрование, измельчение и брикетирование.

Далее удаление угля проводят во флотаторах 96, которые последовательно соединены с 9а. При этом отделяется второй всплыв, который может составлять 4 %,от массы сырья. Эта фракция отбрасывается либо подвергается дальнейшей переработке. В процессе дальнейшего пенообразования частицы углеродного концентрата становятся все более мелкими, а содержание углерода снижается.

При добавлении на стадии подготовки к флотации диспергирующего агента гексаметафосфата натрия достигается более четкое отделение углерода. Однако некоторые другие обычные диспергирующие агенты оказывают обратное, действие на процесс отделения углерода. Так, например, для этой цели нельзя применять «Орзан S», поскольку он также является депрессором углерода.

Углерод, удаляемый из зольной пыли, в основном представляет собой пористый материал, который легко размалывается. При измельчении до величины частиц менее 1 мкм его можно использовать в качестве наполнителя и армирующего материала для резины.

Во флотаторах 9 происходит удаление основной части углерода, содержащегося в зольной пыли, что позволяет получать пуццолан повышенной прочности либо промышленный наполнитель, которые почти не содержат углерода (<1 %).


При просеивании отделенного материала через сито 20 размером 200 меш ~20 % исходного вещества удаляется в виде углерода 20—25 %-ной чистоты. Фракцию —200 меш из второго всплыва, которая проходит через сито 20, снова концентрируют, добавляя керосин, и измельчают в шаровой мельнице 22 с получением частиц очень малых размеров, в результате чего высвобождается захваченный углерод и после дополнительной обработки во флотаторах 27 и 29 получается обогащенная углеродом фракция, которую смешивают с концентратом, получаемым во флотаторах первой ступени. Указанная фракция составляет 0,5 % массы исходного сырья и содержит с~75 % С.

Данную фракцию отделяют во флотаторе 27, а всплыв из флотатора 29 направляют для дальнейшей обработки либо отбрасывают. Таким образом после флотации во флотаторах 9а и 96 получают остаточный материал с низким содержанием углерода и углеродный концентрат, являющийся продажным продуктом, количество которого составляет ~3 % от массы сырья.

Остаток, получаемый во флотаторе 9а, направляют в аппарат 31, в котором всплывают и отделяются сферические пористые частицы, являющиеся, после удаления углерода, наиболее легким компонентом зольной пыли. После отстаивания суспензии зольной пыли пористые частицы сгребают с поверхности, после чего подвергают фильтрации и сушке. Их количество составляет 0,3 % от общего количества сырья; для более полного отделения можно провести повторное перемешивание и отстаивание. Отделяемый продукт находит применение в качестве звукоизолирующего материала и легкого балластного материала. Сушку можно проводить в микроволновой печи.

Сферические пористые частицы важно удалить из продукта, особенно в случае получения пуццолана повышенной прочности, поскольку эти частицы неустойчивы и легко разрушаются, что приводит к уменьшению прочности получаемого материала.

После удаления пористых частиц часть материала из аппарата 31 подают в шаровую мельницу 32, где происходит его дальнейшее измельчение. При этом консистенция материала контролируется таким образом, чтобы весь продукт, выходящий из аппарата 31 содержал ~50 % твердого вещества. Этот продукт направляют в последовательно соединенные кондиционеры 34 и 34а. В кондиционер 34 также подают остаток из второго флотатора 29. В случае необходимости сюда же можно добавить подходящий диспергирующий агент; особенно целесообразно это в том случае, если конечный продукт подвергается сушке распылением. Однако диспергирующий агент можно и не добавлять.

Материал, выходящий из кондиционера 34а, подают в мокрый магнитный сепаратор, называемый также феррофильтр 25. Для отделения можно использовать несколько магнитных фильтров. Конструкция подходящего магнитного сепаратора описана в патенте США 2 074085.

При первом прохождении через магнитный сепаратор отделяется магнитная фракция с содержанием 50—80 % Fe203, составляющая ~12 % от общего количества зольной пыли. Отделяемый продукт с высоким содержанием железа брикетируют или направляют в плазменную дуговую печь для получения железных отливок. Он также может быть использован при разделении в тяжелых средах.

Немагнитную фракцию после первого феррофильтра обычно направляют во второй феррофильтр 36, где удаляется вторая магнитная фракция, составляющая 19 % от общего количества сырья. Если конечный продукт не должен содержать очень малых количеств железа, то нет необходимости во втором феррофильтре. На схеме этому случаю соответствует пунктирная линия 38, показывающая, что 83 % отделенного продукта подают непосредственно в сортировочный аппарат 43 и шаровую мельницу 48. Получаемый при этом материал может быть использован в качестве наполнителя.

Однако, для того чтобы получить пуццолан повышенной прочности, желательно использовать второй феррофильтр 36, в котором происходит удаление еще 20 % продукта с низким содержанием железа. Только после этого немагнитную фракцию направляют в сортировочный аппарат 43 и в шаровую мельницу 48. При этом получаемый пуццолан подвергается дальнейшему измельчению. На этой стадии может быть добавлен диспергирующий агент (например, 0,018—0,025 % лигносульфоната кальция).

Материал, выходящий из аппарата 43, направляют в концентратор 44, в котором происходит удаление воды и содержание твердых веществ в материале увеличивается до 40—50 % . Далее его смешивают в кондиционерах 47 и 49 с известью, подаваемой в количестве 2,2 кг на тонну твердого вещества. После кондиционера 49 продукт снова подвергают фильтрованию и сушке. В результате получают пуццолан повышенной прочности.

Пуццолан содержит <1 % углерода и обычно 6 % Fe03; содержание примесей может меняться в зависимости от происхождения сырья. Продукт, получаемый в концентраторе 44, может быть непосредственно использован как пуццолан повышенной прочности или как инертный минеральный наполнитель без дополнительной обработки известью. В обоих случаях получают продукт с очень малым размером частиц, похожий на каолиновую глину или цемент; высушенный продукт хранится в бункерах.


Глава 3. СПОСОБ ИЗГОТОВЛЕНИЯ ПЕСЧАНИСТОГО ПОРТЛАНДЦЕМЕНТА

Для компенсации снижения прочности увеличивают дисперсность цемента и микронаполнителя до 3500-4000 см2/г, что связано со значительными затратами, [1].

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому эффекту является способ приготовления пуццоланового портландцемента. Однородность смеси, состоящей из портландцементного клинкера, при принятой дозировке гипса и активных минеральных добавок получают путем совместного тонкого измельчения либо тщательным смешением тех же материалов, измельченных отдельно с удельной поверхностью 2500-3000 см2/г. После этого подают воду и окончательно перемешивают смесь. Добавки в присутствии воды связываются с известью, выделяющейся при гидратации портландцементной составляющей, и образуют устойчивые нерастворимые соединения. Полученное тесто укладывают в формы, которым в начальный период твердения цемента для нормального роста прочности необходимо обеспечить высокую влажность среды, [2].

Основными недостатками свойств пуццоланового портландцемента, изготовленного с помощью известного способа, являются высокая усадка при твердении в воздушно-сухих условиях, а значит и низкие трещиностойкость и прочность; низкая морозостойкость; малая скорость твердения в нормальных условиях; дефицитность активных минеральных добавок.

Цель достигается тем, что в известном способе приготовления пуццоланового портландцемента, включающем смешение портландцемента, активной кремнеземистой добавки с удельной поверхностью 2200-3200 см2/г и воды, в качестве активной минеральной добавки используют отход производства алюмосиликатного катализатора крекинга нефти в количестве 8-12% от массы пуццоланового портландцемента. Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ отличается от известного тем, что, с целью увеличения прочности, трещиностойкости и морозостойкости при снижении затрат на его производства, в качестве активной минеральной добавки используют отход производства алюмосиликатного катализатора крекинга нефти в количестве 8-12% от массы пуццоланового портландцемента.

Наиболее крупномасштабным производством катализаторов нефтепереработки и нефтехимии являются катализаторные производства для процесса каталитического крекинга (40 тыс.т,/ год катализаторов различных марок), имеющие большой выброс вторичных продуктов и отходов (до 1 т на 1 т товарного продукта), что приводит к экологическим проблемам. Указанные отходы содержат в своем составе кремнезем, который связывается с гидроксидом кальция, выделяющимся при гидратации портландцемента, образуя низкоосновные гидросиликаты кальция, обуславливающие высокую прочность гидравлического вяжущего. Таким образом заявляемый состав соответствует критерию изобретения "Новизна". Известны технические решения [1], [2], в которых дисперсность инертной добавки в составе смешанного цемента существенно не влияет на прочность растворов и бетонов нормального твердения. Вместе с тем частицы микронаполнителя принимают участие в формировании микроструктуры цементного камня [1]. Зерна предварительно измельченной катализаторной крошки при формировании структуры цементного камня, являясь центрами кристаллизации продуктов гидратации, способствует его интенсивному затвердеванию. Сравнительно высокая морозостойкость полученного цемента объясняется тем, что измельченная катализаторная крошка, имеющая сильно развитую поровую структуру, активно влияет на влагосодержание цементного теста. На начальном этапе твердения зерна измельченной катализаторной крошки под влиянием градиента влажности поглощают избыток влаги из цементного теста, что способствует формированию плотной и непроницаемой структуры цементного камня. При проведении патентных исследований не были выявлены признаки, сходные с новыми признаками предлагаемого способа, что способствует о существенных отличиях предлагаемого способа от известных технических решений.

Измельченная до величины удельной поверхности 2200-3200 см2/г катализаторная крошка смешивается с портландцементом и водой в растворосмесителе в течение 2-3 мин, после чего смесь укладывают в формы.

Ввиду высокой морозостойкости полученный предлагаемым способом пуццолановый портландцемент можно применять для бетонных и железобетонных конструкций, для подземных и подводных сооружений. Эксплуатационные характеристики цементов определялись по стандартным методикам.

Экономическая эффективность предлагаемого способа заключается в том, что увеличение прочности пуццоланового портландецента позволяет снизить расход цемента.


Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.