скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКонтрольная работа: Технологии подготовки воды

Обеззараживание при использовании воды из артезианских скважин. В последние годы и промышленные предприятия, и застройщики частного сектора повсеместно ведут бурение скважин, решая проблему обеспечения водопотребления на объектах с помощью артезианской воды. Действительно, такое решение представляется выгодным как по удобству эксплуатации, так и с точки зрения минимизации расходов на водообеспечение объектов.

К сожалению, довольно часто вода, получаемая из скважин, не соответствует нормативным требованиям, например СанПиН 2.1.4.1074-01 "Питьевая вода. Гигиенические требования ...". Качество добываемой из скважины воды определяется глубиной залегания водоносного горизонта окружающими его породами, способностью окружающих пород задерживать загрязнения с поверхности. За редким исключением, артезианская вода характеризуется высокой жесткостью и содержанием железа. Концентрации этих примесей достигают нескольких мг/л, а иногда и десятков или даже нескольких десятков мг/л. И если в последнем случае - очень загрязненной воды - выгоднее искать другой источник водоснабжения, то в случае, когда жесткость воды и содержание в ней железа не превышают 10 мг/л, разумнее оборудовать скважину системой водоподготовки.

Типичная система очистки воды из скважины состоит из нескольких ступеней: фильтра грубой очистки для удержания крупных включений, взвешенных веществ, песка; блока обезжелезивания; блока умягчения и системы обеззараживания. Обычно у пользователя нет возражений по системам очистки воды от железа и содержания солей, и во то же время возникает явное недопонимание необходимости оснащения скважины системой обеззараживания. Это обусловлено тем, что отложения солей жесткости и железа легко заметны при эксплуатации бытового и нагревательного оборудования, а сами вещества легко определяются в ходе анализа воды.

В то же время бактериологический анализ воды из скважины обычно показывает отсутствие микробиологического загрязнения. Оценивая результаты разового анализа, потребитель считает, что с микробиологией в потребляемой воде все в порядке, и ради экономии отказывается от системы обеззараживания. Однако в силу того, что механизмы микробиологического загрязнения артезианской воды принципиально отличаются от механизмов загрязнения железом и солями, сэкономив на системе обеззараживания, потребитель рискует попасть в опасную ситуацию.

Пути проникновения микроорганизмов в воду, получаемую из артезианских скважин, следующие: 1) заражение воды непосредственно на комплексе водоочистки происходит следующим образом: когда в воде высокое содержание железа, то для его удаления необходимо перевести его из двухвалентной формы (FeII) в трехвалентную (FeIII), которая затем осаждается на загрузке фильтра, или, говоря проще, окислить имеющееся в воде железо. Но для окисления необходим кислород, и поэтому в схеме водоподготовки организуют зону аэрации, либо устраивая разрыв струи, либо вводя в технологическую цепочку аэратор. Вот с забортным воздухом и попадают в артезианскую воду микроорганизмы; 2) микробиологические загрязнения могут обнаруживаться в артезианской воде даже когда нет разрыва струи и вирусам вроде как нет возможности проникнуть в воду. Попадают они туда вместе с инфильтрационным пополнением водоносного горизонта, т. е. медленно проходя сквозь породу. Такой способ загрязнения наиболее характерен для неглубоких скважин и скважин, пробуренных вблизи поверхностных водоемов. Осадочные породы хорошо удерживают бактерии, но вирусы, обладая много меньшими размерами, легко проникают на значительную глубину и могут приводить к вирусному заражению водоносного горизонта. А так как обычно вирусы обладают высокой способностью к длительному сохранению своих вирулентных свойств, то их проникновение в скважную воду представляет эпидемиологическую угрозу.

В настоящее время существует много специальных способов обеззараживания воды: хлорирование и йодирование, обработка воды озоном и диоксидом хлора, ультрафиолетовое излучение. Какой же метод более эффективен? Ответ прост: каждый из них может обеспечить барьерную роль, защищая потребителя от проскока патогенных микроорганизмов. Какой же метод наиболее предпочтителен для воды, добываемой из скважины? Более чем 15-летний опыт работы с УФ-технологией показал, что этот метод одновременно самый надежный, простой и дешевый.

Аттестация УФ-систем методом биодозиметрии. Критерием надежности УФ-обеззараживания является доза облучения, обеспечиваемая во всем объеме обрабатываемой воды. В условиях идеальной модели доза облучения зависит от УФ-интенсивности, расхода и пропускания воды на длине 254 нм. Однако на практике распределение дозы облучения в зоне обеззараживания неоднородно. Расстояние между УФ-лампами, геометрия зоны облучения оказывают значительное влияние на дозу облучения, т. е. на эффективность обеззараживания. УФ-установки, имеющие одинаковое количество УФ-ламп и равнозначную мощность, могут обеспечивать разную дозу облучения за счет конструктивных отличий.

Для определения фактической дозы облучения УФ-систем в Европе и Америке используется метод биодозирования. Суть метода заключается в определении дозы облучения по достигаемой степени инактивации микроорганизмов.

В настоящее время существует несколько протоколов проведения аттестационных тестов биодозирования, разработанных Австрийским институтом стандартов (ONORM M 5873-2), Агентством по защите окружающей среды США US EPA (Draft 6/03), Германской ассоциацией по проблемам воды и газа (DVGW). Протоколы имеют некоторые различия в обработке результатов и проведении процедуры, однако в целом сопоставимы.

В 2006 г. серия оборудования НПО "ЛИТ" на амальгамных лампах успешно прошла процедуру аттестации по протоколу ONORM M 5873-2, подтвердив высокий уровень своей продукции в соответствии с мировыми стандартами. Аттестация серии оборудования УДВ-А проводились на базе испытательного стенда Венского института гигиены и микробиологии (Австрия).

В процессе тестирования проверяется соответствие заявленных технических параметров оборудования при минимальном, среднем и максимальном расходах воды, в условиях снижения мощности УФ-ламп и снижения коэффициента пропускания воды в рамках границ, указанных производителем.

Для проведения испытаний производитель оборудования представляет зависимость дозы облучения от расхода и коэффициента пропускания воды и диапазон допустимых условий эксплуатации, при которых будет обеспечиваться заданная доза облучения. Также производитель представляет данные о снижении мощности УФ-ламп к концу срока службы.

Испытания проводятся в проточном режиме эксплуатации, в процессе которого на установку УФ-обеззараживания подается вода, зараженная тест-микроорганизмом в концентрации порядка 106 - 107 КОЕ/л. В качестве тест-микроорганизма используются споры бактерий Bacillus subtilis. Кривая инактивации спор B. subtilis позволяет производить количественное определение дозы облучения эквивалентной снижению концентрации спор в диапазоне от 20 до 60 мДж/см2.

Определение дозы облучения производится калибровочной кривой чувствительности микроорганизмов, полученной в лабораторных условиях идеальной модели УФ-системы.

Процедура определения дозы облучения биодозиметрией может быть использована как для сточной, так и для питьевой воды. Однако в случае обеззараживания питьевой воды аттестации УФ-систем уделяется особое внимание. При обеззараживании сточных вод доза облучения по степени инактивации микроорганизмов может быть определена в любой момент, так как на УФ-обеззараживание постоянно поступает вода, содержащая высокие концентрации микроорганизмов, которые после УФ-обеззараживания не должны превышать установленного нормами уровня. Снижение дозы облучения на станции УФ-обеззараживания сточных вод будет заметно по снижению эффективности обеззараживания.

Аттестация УФ-систем на соответствие дозы облучения является обязательной процедурой для оборудования, применяемого для обеззараживания питьевой воды в странах Европейского союза и США. В России практика аттестации УФ-систем не используется. Тем не менее заказчик должен учитывать, что наличие у производителя оборудования аттестации на соответствие дозы облучения является объективным подтверждением надежности УФ-системы. В России применение УФ-оборудования регламентировано и рекомендовано Министерством природных ресурсов РФ, Главгосэкспертизой России, НТС Госстроя России, Российской ассоциацией водоснабжения и водоотведения, НИИ гигиены им. Ф. Ф. Эрисмана, территориальными органами соответствующих федеральных служб и ГЦСЭН.

НПО "ЛИТ" также выпускает УФ-оборудование для обеззараживания воздуха и поверхности: облучатели открытого типа, рециркуляторы воздуха закрытого типа, бактерицидные УФ-модули для систем вентиляции и кондиционирования и др. Они эффективно применяются в промышленности, медицинских, образовательных, спортивных и общественно-культурных учреждениях и т. п.


5. Основы процессов и классификация методов умягчения воды

Устранение из воды или снижение содержания солей жесткости называется ее умягчением. Воду умягчают для технологических нужд целого ряда производств (текстильного, искусственного волокна, химического, бумажного, производства пластмасс и др.), где необходима вода жесткостью не более 0,01 мг-экв/л. Умягчение воды требуется при подготовке питательной воды для котельных установок, для банно-прачечного производства. Известны три основных способа умягчения воды: реагентный, катионитовый и термический. При реагентном способе в качестве реагентов могут быть применены известь либо совместно известь и кальцинированная сода, едкий натр и др. В первом случае способ умягчения воды называют известкованием, во втором - известково-содовым, в третьем - едконатровым способом. Катионирование - фльтрование воды через слой катионита, сопровождающееся ионным обменом. Термический способ устранения жесткости основан на уменьшении растворимости углекислоты при нагревании воды и нарушении углекислотного равновесия. Этот способ применяют для умягчения вод, содержащих преимущественно бикарбонатную и карбонатную жесткость и используемых для питания котлов низкого давления и на предприятиях коммунального хозяйства.

Термическое умягчение воды. При нагревании воды растворенная в ней равновесная свободная углекислота выделяется, что ведет к нарушению углекислотного равновесия и к распаду содержащихся в ней двууглекислых солей кальция и магния, теряющих половину связанной углекислоты.

Реакция образования осадка гидроксида магния протекает очень медленно, ускорить ее можно, ведя процесс при температуре кипячения воды. Термическое умягчение воды осуществляют в водоумягчителях-кипятильниках. Однако этот метод устранения жесткости в настоящее время самостоятельного значения не имеет. При реагентном умягчении воды для питания котлов термический метод умягчения используют для предварительного умягчения с целью снижения расхода реагентов.

Реагентов умягчение воды. Реагентное умягчение воды состоит в том, что при введении в воду специальных реагентов катионы кальция и магния, растворенные в ней, переходят в практически нерастворимые соединения, выводимые в осадок. В зависимости от вида применяемых реагентов различают следующие методы умягчения: известковый, известково-содовый, едконатровый, фосфатный и бариевый. Известковый метод используют для частичного устранения карбонатной жесткости воды (для снижения ее щелочности). Самостоятельного распространения этот метод не получил, обычно его сочетают с содовым или катионитовым методом. Введение в воду гашеной извести в виде известкового молока или раствора, в первую очередь, вызывает нейтрализацию свободной углекислоты с образованием малорастворимого карбоната кальция, выпадающего в осадок.

Добавление извести в количестве большем, чем необходимо для нейтрализации свободной углекислоты, вызывает распад бикарбонатов с выделением из воды карбоната кальция.

Дальнейшее введение в воду извести приводит к гидролизу магниевых солей и образованию малорастворимого гидроксида магния Mg (ОН)2, который при рН>10,2- 10,3 декантирует.

Известкованием устраняют из воды и некарбонатную магниевую жесткость при условии, что рН воды будет не ниже 10,2-10,3.

Приведенные уравнения показывают, что магниевая жесткость устраняется, но величина общей жесткости остается неизменной, так как магниевая жесткость заменяется кальциевой, некарбонатной. Следовательно, известкованием воды может быть в той или иной мере устранена карбонатная и магниевая жесткость воды, но не может быть снижена некарбонатная жесткость. Для устранения некарбонатной жесткости в воду кроме извести вводят соду.

После добавления в воду извести и соды мгновенно происходит образование коллоидных соединений карбоната кальция и гидроксида магния. Переход же от коллоидного состояния в грубодисперсное, при котором СаС03 и Mg(ОН)2 выпадают в осадок, занимает длительное время, измеряемое часами.

Для ликвидации тормозящего действия органических примесей на процесс умягчения воды кроме извести и соды в нее вводят коагулянт, достигая при этом удаления из воды органических соединений и вызывая укрупнение мельчайших кристаллов, карбоната кальция и гидроксида магния, что обеспечивает более высокий эффект работы тонкослойных отстойников или осветлителей со взвешенным слоем. В первом случае коагулянт следует вводить до введения извести и соды, во втором - после. Если применение коагулянта вызвано как необходимостью укрупнения коллоидных соединений карбоната кальция и гидроксида магния, так и необходимостью удаления органических соединений, замедляющих процесс водоумягчения, то коагулянт вводят в воду дважды: первый раз - до введения извести, а второй - после.


Задача

При крашении одежды в темно-синий цвет ее последовательно выдерживают в двух ваннах с раствором красителя, состав которых в граммах слудующий (из расчета на 8 кг одежды):

Краситель свежая ванна вторая ванна

Прямой синий

Поваренная соль        

Кальцинированная сода

Рассчитайте массовую концентрацию компонентов каждой ванны в отдельности по отношению в одежде и укажите сколько каждого компонента в совокупности по двум ваннам потребуется для крашения 1 тонны одежды.

Решение

Найдем содержание компонентов свежей ванны по отношению к одежде:

А) Краситель бордо

8000 г – 100 %

375 г – х

х = 4,687 %

б) Поваренная соль

8000 г – 100 %

500 г – х

х = 6,25 %

в) Кальцинированная сода

8000 г – 100 %

50 г – х

х = 0,625 %

Рассчитаем также для второй ванны:

А) Краситель бордо

8000 г – 100 %

265 г – х

х = 3,31 %

б) Поваренная соль

8000 г – 100 %

300 г – х

х = 3,75 %

в) Кальцинированная сода

8000 г – 100 %

25 г – х

х = 0,312 %

2. Найдем сколько каждого компонента в совокупности по каждой ванне потребуется на 1000 кг одежды:

А) Краситель бордо 4,687 + 3,31 = 7,99 %

1000 кг – 100 %

х кг – 7,99 %

х = 79,9 кг

б) Поваренная соль 6,250 + 3,750 = 10 %

1000 кг – 100 %

х кг – 10 %

х = 100 кг

в) Кальцинированная сода 0,625 + 0,312 = 0,781 %

1000 кг – 100 %

х кг – 0,937 %

х = 9,37 кг

Ответ: для крашения 1000 кг одежды необходимо красителя бордо – 79,9 кг, поваренной соли – 100 кг, кальцинированной соды – 9,37 кг.


Выводы

Проблема очистки воды, используемой для бытовых и промышленных целей, от различных загрязнений имеет огромное значение. С одной стороны, постоянно повышаются требования к качеству воды, особенно в промышленности и энергетике, а с другой - происходит прогрессирующее загрязнение водных источников, которое затрудняет работу существующих систем очистки.

Водоподготовка воды - это изменение ее физико-химических свойств, в соответствии с требованиями, предъявляемыми в каждом конкретном случае. В зависимости от назначения воды используются различные технологии ее подготовки. Основным критерием выбора технологии водоподготовки являются показатели качества воды, поэтому изначально необходимо провести лабораторные исследования проб воды. От правильно проведенных лабораторных исследований зависит выбор технологии водоподготовки и эффективность работы систем водоочистки. При подготовке воды следует учитывать европейские и местные нормативы, требования производителя эксплуатируемого оборудования и параметры, которым должна соответствовать вода для хозяйственно-питьевых нужд и вода для технологических целей.


Список литературы

1.         Банников А.Г., Рустамов А.К., Вакулин А.А. Охрана природы. - М.: Агропромиздат, 1987 245 с.

2.         Боков ВЛ., Лущик А.В. Основы экологической безопасности. - Симферополь: Сонат, 1998. - 224 с.

3.         Жуков А.И., Монгайт И.Л., Родзиллер И.Д. Методы очистки производственных сточных вод. - М.: Стройиздат, 1985. – 298 с.

4.         Капинос П.И., Панесенко Н.А. Охрана природы. - Киев: "Вища школа", 1991. – 210 с.

5.         Комплексное использование и охрана водных ресурсов. / Под редакцией О.А. Юшманова. - М.: Агропромиздат, 1985 – 234 с.

6.         Крисаченко В.С. Екологічна культура: теорія і практика. - К.: Заповіт, 1996. - 108 с.

7.         Методы охраны внутренних вод от загрязнения и истощения. / Под редакцией И.К. Гавич. - М.: Агропромиздат, 1985. – 320 с.

8.         Миркин Б.М., Наумова Л.Г. Экология. - Уфа: Восточный университет, 1998. - 256 с.

9.         Охрана окружающей природной среды. / Под редакцией Г.В. Дуганова. - Киев: "Выща школа", 1990. – 300 с.

10.       Охрана производственных сточных вод и утилизация осадков. / Под редакцией В.Н. Соколова. - М.: Стройиздат, 1992. – 260 с.

11.       Туровский И.С. Обработка осадков сточных вод. - М.: Стройиздат, 1984. – 120 с.

12.       Экология города: Учебник. / Под ред. Ф.В.Стромберга. – К.: Либра, 2000. – 464 с.


Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.