скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКонтрольная работа: Математический анализ

Контрольная работа: Математический анализ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХПИ»

Кафедра «Вычислительной техники и програмирования»

Расчётно–графическое задание

по курсу «Теория алгоритмов и вычислительные методы»

Харьков 2005


Исходные данные:

Вариант №

y0

y1

y2

y3

y4

y5

h

x0

64 -0.02 0.604 0.292 -0.512 -1.284 -2.04 0.5 0.3

Задача 1

Исходные данные вводятся в ЭВМ как абсолютно точные числа и представляются в ней в виде чисел с плавающей точкой с относительной погрешностью в одну миллионную. Введенные данные x0 и y0 служат основой формирования двух векторов x=(x0, x1, …, xn) и y=(y0, y1, , yn) по рекуррентным формулам:


Вычислить скалярное произведение с := (x, y) по алгоритму:

с := 0; i := 0;

while i < n + 1 do c := c + xi · yi;

и оценить аналитически и численно инструментальную абсолютную и относительную погрешности.

Решение

Поскольку данные представляются в ЭВМ в виде чисел с плавающей точкой с относительной погрешностью, то

x0 = x0(1+δ)

y0 = y0(1+δ)

C0 = x0y0(1+δ)




При i = 1

При i = 2

x2 = x03(1+δ)5

y2 = y0(1+δ)3

C2 = x0y0(1+δ)5 + x02(1+δ)7 + x03y0(1+δ)10

При i = 3

x3 = x04(1+δ)7

y3 = (1+δ)5

C3 = x0y0(1+δ)6 + x02(1+δ)8 + x03y0(1+δ)11 + x04(1+δ)14

При i = 4

x4 = x05(1+δ)9

y4 = y0(1+δ)7

C4 = x0y0(1+δ)7 + x02(1+δ)9 + x03y0(1+δ)12 + x04(1+δ)15 + x05y0(1+δ)18


Выявим закономерность изменения Ci:

При расчете Cn без учета погрешности исходных данных и погрешности вычисления, получим

Обозначим эту сумму как S1.

Тогда абсолютная погрешность S2


а относительная погрешность


Оценим инструментально относительную и абсолютные погрешности при n = 10

S1 = 0.0923071

S2 = 1.45914·10-6

S3 = 1.58075·10-5

 

Задача 2

Для функции g(x), заданной своими значениями в шести точках, составить таблицу всех повторных разностей. Преобразовать функцию g(x) с помощью линейного преобразования x = a + b * k в функцию G(k) с целочисленным аргументом k. В качестве проверки правильности заполнения таблицы вычислить аналитически конечную разность Δng(x) = ΔnG(k) для n = 5.

Решение

Составим таблицу всех повторных разностей:

 

k x y Δy

Δ2y

Δ3y

Δ4y

Δ5y

0 0.3 0.02 -1.576 0.044 -0.136 0.66 -0.54
1 1.1 -1.556 -1.532 -0.092 0.524 0.12
2 1.9 -3.088 -1.624 0.432 0.644
3 2.7 -4.712 -1.192 1.076
4 3.5 -5.904 -0.116
5 4.3 -6.02

 


Найдем формулу перехода от x к   k:


Выполним проверку, вычислив аналитически конечную разность

Δng(x)= ΔnG(k) для n = 5:

Конечные разности, вычисленные аналитически и таблично Δng(x) = ΔnG(k) для n = 5 совпали, следовательно, таблица повторных разностей составлена верно.

 

Задача 3

Таблично заданную функцию G(k) с целочисленным аргументом представить в виде разложения по факториальным многочленам (z(n) = z · (z-1) · (z-2) · … · (z - n + 1)) и преобразовать его в степенные многочлены G(z) и G(x).

Решение

Представим функцию G(k) в виде разложения по факториальным многочленам:


Преобразуем функцию G(k) в степенной многочлен G(z):

Выполним проверку при k = 1:


0.604=0.604

Так как результаты совпали, значит степенной многочлен G(z) представлен правильно.

Преобразуем функцию G(k) в степенной многочлен G(x). Зная, что получим:



Проверим вычисления при x = 0.8:


0.6045128 ≈ 0.604

Так как результаты совпали, то вычисления сделаны верно.

 

Задача 4

 

Вывести аналитическое выражение суммы для функции целочисленного аргумента G(z). Проверить правильность вычисления полученного выражения прямым суммированием табличных значений G(k), k = 0, 1, 2, 3, 4, 5 (m = 5).

 

Решение.

Для вычисления значения суммы используем функцию G(z) в виде разложения по факториальным многочленам, полученным в задаче 3:



где

Для проверки, просуммируем значения G(k) из таблицы:

-0.02 + 0.604 + 0.292 - 0.512 - 1.284 - 2.04 = - 2.96

- 2.96 = - 2.96

Так как результаты вычисления аналитического выражения и суммы табличных значений G(k) совпали, значит аналитическое выражение для суммы выведено правильно.

 

Задача 5

Составить таблицу упорядоченных разделенных разностей для g(x). Проверить правильность таблицы для разделенной разности [x0; x1; x2; x3] по формуле ее аналитического представления.

Решение

Составим таблицу упорядоченных разделенных разностей для g(x):

xi

g(xi)

[xi; xi+1]

[xi; xi+1; xi+2]

[xi; xi+1; xi+2; xi+3]

[xi; xi+1; xi+2; xi+3; xi+4]

[xi; xi+1; xi+2; xi+3; xi+4;xi+5]

0.3 -0.02 1.248 -1.872 0.592 0.0533333 -0.1567999
0.8 0.604 -0.624 -0.984 0.6986666 -0.3386666
1.3 0.292 -1.608 0.064 -0.0213333
1.8 -0.512 -1.544 0.032
2.3 -1.284 -1.512
2.8 -2.04

Для проверки правильности заполнения таблицы разделенных разностей, вычислим разделенную разность пятого порядка по формуле ее аналитического представления:


Так как результаты вычислений совпали, значит, таблица разделенных разностей составлена правильно.

 

Задача 6

Получить интерполяционные многочлены Лагранжа и Ньютона, проходящие через первые четыре точки таблично заданной функции G(x), и сравнить их степенные представления.

 

Решение

Для нахождения интерполяционного многочлена Лагранжа используем формулу

 где n = 3.

Проведем проверку вычислений, подставив x=0.8 в интерполяционный многочлен Лагранжа, получим y1=0.604

Интерполяционный многочлен Ньютона находится по формуле:

ln(x) = g0 + (x-x0)[x0;x1] + (x-x0)(x-x1)[x0;x1;x2] + … +

+(x-x0)(x-x1)∙ ∙(x-xn-1)[x0;x1;x2;…;xn]


Подставив в формулу gi и xi получим:

Интерполяционные многочлены Ньютона и Лагранжа совпадают.

Проведем проверку вычислений, подставив x=0.8 в интерполяционный многочлен Ньютона, получим y1=0.604


Задача 7.

 

Вывести выражения для вычисления второй производной в точке x=x3 в виде функций:


где ∆ng(0) и g(xn) для n = 0,1,…,5 соответственно значения разностей в точке x = x0 и ординаты g(xn) = gn из задачи N2. Значения производной вычисленные по выведенным формулам, сравнить с вычисленным значением производной, найденной путем дифференцирования интерполяционного многочлена G(x):

 

Решение

Для вычисления производной воспользуемся оператором

дифференцирования:


Выражение для вычисления производной в точке x0 имеет вид:

Для того, чтобы преобразовать его к выражению для вычисления производной в точке x3, применим оператор сдвига:



Для того, чтобы перейти от функции к функции воспользуемся формулой:


Получим выражения для ∆2y0:

∆5y0 = -y0 + 5y1 – 10y2 + 10y3 5y4 + y5

∆4y0 = y0 - 4y1 + 6y2 - 4y3 + y4

∆3y0 = -y0 + 3y1 – 3y2 + y3

∆2y0 = y0 - 2y1 + y2


Подставим эти значения в функцию:

Сравним это значение с вычисленным значением производной путем дифференцирования интерполяционного многочлена G(x):

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.