скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Связь комбинаторики с различными разделами математики

Итак, двумя геометрически различными способами три одинаковые мухи могут усесться в вершинах правильного пятиугольника.

Задача 6. Сколькими способами можно раскрасить вершины куба в два цвета (красный и синий) так, чтобы вершин каждого цвета было поровну?

Решение. Для решения этой задачи воспользуемся задачей 1. Пусть М множество всевозможных по-разному раскрашенных кубов одного размера, положение которых в пространстве фиксировано. Тогда по формуле nk (k1, k2, …, kn) =  получим |M| = 28 (4,4) = = 70 по-разному раскрашенных кубов. Так как нам нужно раскрасить вершины в два цвета (4 - в красный, 4 - в синий), то минимальное количество циклов в перестановке должно быть равно двум. Поэтому все перестановки 1) – 24) (задача 1) имеют неподвижные точки. В результате в группе G имеется:

1 перестановка типа <1, 1, 1, 1, 1, 1, 1, 1>,

6 перестановок типа <4, 4>,

9 перестановок типа <2, 2, 2, 2>,

8 перестановок типа <1, 1, 3, 3>.

Тогда перестановка типа <1, 1, 1, 1, 1, 1, 1, 1> имеет 28 (4,4) = = 70 неподвижных точек. Каждая перестановка типа <4, 4> имеет (по принципу умножения Р2 =2∙1= 2 неподвижные точки. Для каждой перестановки типа <2, 2, 2, 2> имеется 24 (2, 2) = = 6 неподвижных точек. Каждая перестановка типа <1, 1, 3, 3> имеет (по принципу умножения) Р2 =2∙1∙2∙1= 4 неподвижные точки. По лемме Бернсайда получаем (1∙70+ 6∙2 + 9∙6 + 8∙4) = 7.

Итак, семью способами можно раскрасить вершины куба в два цвета так, чтобы вершин каждого цвета было поровну.

Задача 7. Сколькими различными способами можно грани куба раскрасить в четыре цвета так, чтобы все четыре цвета присутствовали в раскраске каждого куба?

Решение. Для решения этой задачи воспользуемся задачей 3. Пусть М множество всевозможных по-разному раскрашенных кубов одного размера, положение которых в пространстве фиксировано. Тогда по принципу умножения: первую грань можно раскрасить 4 способами, вторую – тремя, третью – двумя, четвёртую – одним способом, пятую – четырьмя, шестую – четырьмя способами. Получим |M| = 4∙3∙2∙1∙4∙4 = 384. Найдём геометрически различные способы раскраски. Для этого используем описанные в задаче 3 разложения в произведение циклов всех перестановок из группы G вращений куба. Так как в раскраске куба должны присутствовать четыре разных цвета, то минимальное количество циклов в перестановке должно быть равно четырём. Поэтому перестановки 1), 3), 4), 6), 7), 9) – 23) в задаче 3 неподвижных точек не имеют. Таким образом, неподвижные точки имеют 3 перестановки типа <1, 1, 2, 2> и 1 перестановку типа <1, 1, 1, 1, 1, 1>. Определим количество неподвижных точек для перестановок каждого типа. Для перестановки типа  <1, 1, 1, 1, 1, 1> имеем по принципу умножения Р4 = 4∙3∙2∙1∙4∙4 = 384 неподвижные точки. Для каждой перестановки типа <1, 1, 2, 2> по принципу умножения имеется Р4 = 4∙3∙2∙1 = 24 неподвижные точки. По лемме Бернсайда получаем (1∙384+3∙24) = 19.

Итак, существует 19 различных способов раскраски граней куба в 4 цвета так, чтобы все 4 цвета присутствовали в раскраске каждого куба.


§ 2. «Метод просеивания» [4]

Познакомимся с наиболее общим методом пересчёта, который можно назвать «методом просеивания» или «комбинаторным просеиванием»: с любым свойством P можно связать его расщепление на некотором множестве A, в соответствии с которым A разбивается на две части: подмножество А1, образованное элементами, обладающими свойством Р, и А2, образованное элементами, не обладающими свойством Р, т. е. обладающими свойством . Выбирая свойства подходящим образом, можно последовательным просеиванием пересчитать подмножества с наложенными на них теми или иными ограничениями.

2.1. Формула включения и исключения

Пусть А – конечное множество и . Будем обозначать через  дополнение А1 по отношению к А, а через Card A число элементов в А.

Тогда

.

Если и , то

                                         (1)

.

Покажем, что формула (1) обобщается на случай n подмножеств , i=1, 2, ... n:

             (2)

Действуем по индукции. Имеем

                (3)

Предположим, что (2) выполняется для случая n-1 подмножеств Ai, i=1, 2,…,n-1:

             (4)

Рассмотрим следующие подмножества множества An:

Применяя (4) с A=An, имеем

                         (5)

Подставляя (5) и (4) в (3), получаем (2). Таким образом, с учётом (1) формула (2) доказана по индукции. Эту формулу называют формулой включения и исключения. Часто её представляют в таком виде:

               (6)

Формулы (2) и (6) играют основную роль в перечислении подмножеств, обладающих заданными свойствами. Посмотрим на эти формулы с другой точки зрения. Пусть элементы  обладают свойством Pi, i=1, 2, …,n. Тогда мы скажем, что подмножество обладает свойством . Таким образом, если элементы А могут обладать n различными свойствами, то число элементов А, обладающих k указанными свойствами и не обладающих n-k остальными, дается формулой (6).

2.2. Общий метод «просеивания» или «пропускания через решето». Решето Сильва – Сильвестра

Формула (6) описывает последовательный процесс пересчёта, называемый решетом Сильва – Сильвестра.

Пример. Рассмотрим множество

и следующие свойства:

четное число,

 и А >6,                                                                                    (7)

 и 2 < A < 8.

Подсчитаем число элементов А, обладающих свойством . Обозначим подмножества, соответствующие свойствам Р1, Р2, Р3, через А1, А2, А3. Тогда

«Просеиваем» сначала А через Р1: Card A1=6. Затем просеиваем А1 через Р2 и Р3: , . Просеиваем  через Р3:  Итак,  

Формула (6) не позволяет, однако, перечислить элементы искомого множества. Находим его, выписывая последовательно: , , . Разумеется, для множества с небольшим числом элементов проще выписать искомое подмножество, однако это трудно сделать при большой мощности множества.

2.3. Использование общего метода решета в теории чисел

Теорема 1. Пусть А={1, 2, …,n} и а1, а2, …, аr, i=1, 2, …,r, попарно взаимно просты. Количество целых чисел k таких, что 0 < k n, ai не делит k, i=1, 2, …,r, равно

                       (8)

Доказательство. Обозначим  и выпишем формулу (2):

                         (9)

Имеем

Card A=n,

Card Ai=, i=1, 2, …,r,

i≠j, i, j=1, 2, …,r,

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙                                                  (10)

= .

Подставляя (10) в (9), получаем (8).

Пример. Пусть , а1=3, а2=7, а3=8.

Количество целых чисел, не превосходящих 35 и не делящихся ни на 3, ни на 7, ни на 8, равно

Рассмотрим другие приложения.

Количество целых чисел k таких, что

0 < kn, (k, n)=1, ,

обозначают через φ(n) и называют функцией Эйлера.

Теорема 2. Пусть . Тогда

                                         ,                                       (11)

где произведение берётся по всем простым делителям аi числа n.

Доказательство. Так как все ai делят n и взаимно просты, то имеем

=.

По формуле (8)

т.е. получаем (11).

Пример. Пусть n=84. Простыми делителями 84 являются 2, 3, 7; поэтому

Функция Мёбиуса. Представим (11) в другом виде, используя функцию Мёбиуса μ(n), определяемую следующим образом:

μ(1)=1;

μ(n)=0, если n делится на квадрат простого числа;

μ(а1а2…аr)=(-1)r, если ai – различные простые множители, i=1, 2, …,r.

Преобразуем равенство (11), используя функцию Мёбиуса:

Тогда

                                             ,                                         (12)

где суммирование производится по всем k, делящим n (включая 1).

Пример. Имеем

μ(1)=1,                  ,                   ,

,             ,       

,           ,

,          ,       

,       ,  

При n=84 формула (12) даёт

Решето Эратосфена. Известен следующий способ перечисления простых чисел pi, pin: вычисляется  и из последовательности 2, 3, …, n вычеркиваются последовательно все числа, кратные 2, затем кратные 3, …, кратные c. Оставшиеся числа и есть искомые.

Используя теорему 2, можно получить следующую формулу пересчёта. Если  через M(n) обозначить количество простых чисел q таких, что , то в силу (8)

 M(n)= (13)

где  pi -,    i=1, 2, …,r, - простые числа, не превосходящие  (- 1 в правой части добавляется, так как 1 не считается простым).

В силу (12)

                                          M(n)=  ,                                  (14)

где суммирование в (14) производится по всем простым делителям n (включая 1).

Пример. Сколько простых среди чисел 2, 3, …, 84? Имеем =9. Простыми числами между 2 и 9 будут 2, 3, 5, 7. Согласно (13)

Таким образом, имеется всего 19 + 4 = 23 простых числа среди 2, 3, …, 84. Решето Эратосфена перечисляет их: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83.

Расширения данной темы: иногда подмножества не выделяются, а фиксируется число свойств, которыми обладают их элементы. Для этого случая можно вывести формулу, используя формулу (6).

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.