скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго порядка

б)  (1.50)

 (1.51)

Из (1.50) найдем :

Из соотношений (1.25) при условиях (1.39) и (1.50) - (1.51) получаем, что коэффициенты системы (1.1) определяются следующими формулами:


,  - любое число,  (1.52)

, , , ,  (1.53)

Равенства (1.9) - (1.11) и (1.19) - (1.22) при условии, что имеют место формулы (1.52) - (1.53), дадут следующие выражения для коэффициентов интегралов (1.3) и (1.13):

a1=0 (1.54)

a2 (1.55)

a (1.56)

s (1.57)

b (1.58)

g (1.59)

d (1.60)

Теорема 1.5 Система (1.1) имеет частные интегралы вида (1.3) и (1.13) с коэффициентами, определенными формулами (1.54) - (1.60), при условии, что коэффициенты системы (1.1) выражаются через параметры по формулам (1.52) - (1.53).


2. Качественное исследование построенных классов систем

 

2.1 Исследование системы (1.1) с коэффициентами, заданными формулами (1.28) - (1.31)

Будем проводить наше исследование в предположении, что , , .

Пусть мы имеем систему (1.1), коэффициенты которой определяются согласно формулам (1.28) - (1.31), тогда система (1.1) запишется в виде:

 (2.1)

Интегральные кривые в этом случае имеют вид:

 (2.2)

 (2.3)

Найдем состояния равновесия системы (2.1). Приравняв правые части системы нулю и исключив переменную y, получим следующее уравнение для определения абсцисс состояний равновесия:

 (2.4)

Из (2.4) получаем, что


, , , .

Ординаты точек покоя имеют вид:

, , , .

Итак, имеем точки

, , , .

Исследуем поведение траекторий в окрестностях состояний равновесия , , , .

Исследуем точку .

Составим характеристическое уравнение в точке .

Отсюда

 (2.5)


Следовательно, характеристическое уравнение примет вид:

==0.

,

Или

.

Характеристическими числами для точки системы (2.1) будут

.

Корни  - действительные, различных знаков не зависимо от параметра d. Следовательно, точка  - седло.

Исследуем точку

.

Составим характеристическое уравнение в точке

.

Согласно

равенствам (2.5) характеристическое уравнение примет вид:

,

Или

.

Характеристическими числами для точки  системы (2.1) будут

,

то есть

, .

Корни  - действительные и одного знака, зависящие от параметра d. Если d<0, то точка

 -

неустойчивый узел, если d>0, то точка


 -

устойчивый узел.

Исследуем точку .

Применяя равенства (2.5), составим характеристическое уравнение в точке

:

Характеристическими числами для точки

 

системы (2.1) будут

,

то есть

, .


Корни  - действительные и одного знака, зависящие от параметра d. Если d<0, то точка  - устойчивый узел, если d>0, то точка  - неустойчивый узел.

Исследуем точку

.

Составим характеристическое уравнение в точке

.

Применяя равенства (2.5), получим:

,

Или

Характеристическими числами для точки

 


системы (2.1) будут

,

то есть

, .

Корни  - действительные и различных знаков не зависимо от параметра d. Значит, точка

 -

седло.

Исследуем бесконечно - удаленную часть плоскости в конце оси oy. Преобразование

 [7]

переводит систему (2.1) в систему:

 (2.6)

где .


Для исследования состояний равновесий на концах оси y, нам необходимо исследовать только точку . Составим характеристическое уравнение в точке.

Получим, что

 

Корни  - действительные и одного знака. Следовательно, точка  - устойчивый узел.

Исследуем бесконечно - удаленную часть плоскости вне концов оси oy преобразованием [7]  Это преобразование систему (2.1) переводит в систему:

 (2.7)

где .

Изучим бесконечно - удаленные точки на оси U, то есть при z=0. Имеем:


Получаем, что . Следовательно, состояний равновесия вне концов оси oy нету.

Теперь дадим распределение состояний равновесия системы (2.1) в виде таблицы 1.

Таблица 1.

d

x=0
(-∞; 0) седло неуст. узел уст. узел седло уст. узел
(0; +∞) седло уст. узел неуст. узел седло уст. узел

Положение кривых (2.2), (2.3) и расположение относительно их состояний равновесия при d<0 и d>0 дается соответственно рис.1 (а, б).

Поведение траекторий системы в целом при d<0 и d>0 дается рис.4 (а, б) приложения А: Поведение траекторий системы (2.1).

Исследуя вид кривых (2), (2.3) и расположение относительно их состояний равновесия, убеждаемся, что система (2.1) не имеет предельных циклов, так как Воробьев А.П. [5] доказал, что для систем, правые части которых есть полиномы второй степени, предельный цикл может окружать только точку типа фокуса. Учитывая расположение состояний равновесия относительно кривых (1.3) и (1.13), являющиеся интегралами системы (2.1), характер состояния, заключаем, что для системы (2.1) не может существовать предельных циклов, окружающих несколько состояний равновесия.


а (d<0)

б (d>0)

Рис. 1

 

2.2 Исследование системы (1.1) с коэффициентами, заданными формулами (1.41) - (1.42)

Будем проводить наше исследование в предположении, что

  


Пусть мы имеем систему (1.1), коэффициенты которой определяются формулами (1.41) - (1.42). Тогда система (1.1) будет иметь вид:

 (2.8)

Интегральные кривые в этом случае имеют вид:

 (2.9)

 (2.10)

Частный интеграл (1.13) в этом случае преобразовывается в две прямые (2.10)

1. Найдем состояния равновесия системы (2.8). Для этого приравняем правые части системы нулю

Рассмотрим два случая:

Получаем:

Из первого уравнения найдем y:

и подставляя y во второе уравнение получим:

 

Решая это уравнение, находим:

.

Итак, получаем

,

,

Итак, получаем точки

, , ,  

и прямую x=0, которая является траекторией системы (2.8).

2. Исследуем поведение траекторий в окрестностях состояний равновесия

Исследуем точку .

Составим характеристическое уравнение в точке .

Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.