скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Исследование каталитических свойств полимерных комплексов

Рассмотрим некоторые примеры каталитического действия комплексов водорастворимых полимеров с ионами переходных металлов в реакциях разложения пероксида водорода, окисления, гидрирования и др. Разложение пероксида водорода служит хорошей иллюстрацией ферментоподобного действия комплексов полимер — металл. Такие комплексы часто проявляют более высокую активность, чем соответствующие низкомолекулярные аналоги. Например, комплексы поли-4-винилпиридина с Со-диметилглиоксимом могут служить моделью витамина В.

Исследование поведения полимеров (в том числе полимерных гидрогелей) в растворах солей металлов представляет собой огромный практический и теоретический интерес. Изучение особенностей такого поведения в растворах солей различной валентности создает базу в решении многих фундаментальных проблем, связанных с механизмом формирования структурированных ансамблей внутри полимера благодаря ионному или координационному связыванию с ионами металлов или их комплексными формами. С теоретической точки зрения это позволит решить проблему негомогенного распределения ионогенных групп, происходящих в таких системах, способствующее моделированию стадий биологической эволюции в свете формирования клеточных мембран и капсул. С практической точки зрения, изучение поведения набухания полимеров в солях металлов важно в разработке технологии извлечения ионов металлов из природных и сточных вод, в создании новых классов гетерогенных катализаторов, биомедицинских препаратов, термо - и механостойких полимерных материалов, полупроницаемых мембран и полупроводников. Существенно возросло значение хелатообразующих полимеров для аналитических целей.

В целом, по специфике влияния ионов металлов на объемные параметры гидрогелей можно выделить две категории их воздействия:

1) ионы металлов, как низкомолекулярный ион, создающий экранирующий фон для заряженных функциональных групп;

2) ионы металлов, как центральный комплексообразующий ион, связывающийся с лигандными гидрогелями, как за счет донорно-акцепторного взаимодействия, так и электростатического связывания. Следует отметить, что механизм комплексообразования может быть варьируемым. Прочная донорно-акцепторная связь может образоваться при условии, что симметрия набора донорных орбиталей лигандов (их линейная комбинация) соответствует симметрии акцепторных орбиталей центрального иона, а энергия близка к энергии заполненных орбиталей лиганда. В зависимости от соотношения этих факторов в комплексе может возникать ионная или донорно-акцепторная связь, а также большое число промежуточных вариантов, то есть, одновременное существование ионного и донорно-акцепторного взаимодействия.

Согласно классификации авторов полимер-металлические комплексы (ПМК) могут быть получены различными путями: 1) в результате внутри- или межмолекулярной "сшивки"; 2) при взаимодействии полимерного лиганда со стабильным комплексом, в котором центральный ион металла замаскирован низкомолекулярным лигандом; 3) полимеризацией пар мономер-металл; 4) путем включения иона металла в сетку полимера, приводящего к образованию паркетоподобных ПМК и т.д.

Среди этого многообразия комплексов наибольший интерес представляют координационные соединения, хорошо растворимые в водной и водно-органических средах. При их исследовании появляется возможность в широких пределах изменять природу полимерного лиганда и его молекулярную массу, гидрофильно-липофильный баланс (ГЛБ) цепных макромолекул, природу иона металла; удается варьировать также ряд внешних факторов, оказывающих влияние на морфологию и структуру комплексов.

Интенсивное развитие методов синтеза и химической модификации полимеров позволяет получать макромолекулы не только нужной длины и заданного строения, но также сочетать различные функциональные группы, необходимые для создания сорбционного и каталитического участков в полимерной цепи Это дает возможность придать синтетическим полимерам некоторые важные свойства полимеров биологического происхождения.


2. Методическая часть

2.1 Получение и очистка исходных веществ

В работе был использован поливинилпирролидон с молекулярной массой- марки ч.д.а., использовался без дополнительной очистки.

         [ - CH2 – CH – ]

                N                O

Железо (ΙΙ) сернокислое 7-водное FeSO4*7H2O, чистое, использовалось после высушивания при 120°С.

Кобальта (ΙΙ) нитрит 6-водный Co(NO2)2*6H2O, чистый, использовался после высушивания при 100°С.

Кадмия (ΙΙ) хлорид CdCl2, марки ч.д.а., использовался без дополнительной очистки.

Пероксид водорода Н2О2-37% (продажный).

Соляная кислота – HCl, 1н., стандартизированная NaOH.

Растворитель – вода бидистиллированная Н2О, спирт этиловый С2Н5ОН, ρ=0,875 г/мл.

Оборудование: иономер универсальный ЭВ-74 со стеклянным и хлорсеребряным электродами, химические стаканы на 50мл., бюретки, пипетки, шкаф сушильный, весы технохимические ВГУ-1, весы аналитические ВЛР-2, мерные колбы на 50мл., вискозиметр Убеллоде, термостат, бюкс, секундомер, прибор для определения каталазной активности(изображен на рисунке №17 в приложении).


2.2 Методика проведенных экспериментов

Изучение процесса комплексообразования проводилось методом рН-метрического титрования. Оно проводилось при помощи иономера с точностью измерения ±0,05 ед. рН со стеклянным и хлорсеребряным электродами при температуре 25°С. В стакан для титрования наливали сначала 10мл. 0,1н. раствора ПВПД, затем титровали 1н. раствором HCl при постоянном перемешивании из пипетки. Измерение рН проводили через каждые 0,1мл. прилитых эквивалентов кислоты. Далее таким же образом титровали смесь 5мл. 0,1н. раствора CdCl2 и 5мл. 0,1н. раствора ПВПД, а также смесь 5мл. 0,1н. раствора Co(NO2)2 и 5мл. 0,1н. раствора ПВПД, и смесь 5мл. 0,1н. раствора FeSO4 и 5мл. 0,1н. раствора ПВПД. Вязкость исследуемых растворов (вышеперечисленных смесей полимера и солей) измерялась в капиллярном вискозиметре Убеллоде, в термостатируемой камере при 25 + 0,10С. Удельную вязкость раствора вычисляли по формуле:

ηуд.= (τ – τ0)/τ0.

Приведенную вязкость рассчитывали по формуле:

ηпр.= ηуд /С,

где С - концентрация полимера (г./дл..), τ- время истечения раствора, τ0- время истечения чистого растворителя, измеренное и равное 248сек. Вискозиметр представляет собой капиллярную трубку, соединенную с измерительным шариком. Вискозиметр погружен в термостат. Раствор засасывается грушей из резервуара вискозиметра в шарик выше верхней метки над измерительным шариком. Измеряется время истечения жидкости между верхней и нижней метками измерительного шарика. Вязкость каждого раствора измеряется 3 раза. Определяется время истечения раствора полимера (t) после каждого разбавления.

Определение каталазной активности полученных катализаторов проводилось на основе реакции разложения перекиси водорода Н2О2. Суть определения заключается в следующем. В колбу поместить дистиллированную воду объемом 1,2 мл, затем добавить 10мл. катализатора, поставить на плитку (колба находится на водяной бане) и включить магнитную мешалку. Термометром измеряется температура воды водяной бани. Как только температура начинает приближаться к 400 С, в колбу с катализатором добавить 0,9 мл Н2О2, и сразу же закрыть колбу пробкой с трубкой, соединенной с газовой бюреткой. Включить секундомер, и через определенный промежуток времени измерить объем выделяющегося кислорода. После того, как кислород перестал выделяться, установка отключалась, а катализатор оставляли на сутки для проверки стабильности. Через сутки опять добавляли 0,9мл Н2О2 и точно также измеряли объем выделяющего кислорода.


3. Практическая часть

3.1 Результаты и обсуждения

Цель работы:

1)         Исследование комплексообразования ионов железа, кобальта и кадмия с поливинилпирролидоном различными физико-химическими методами;

2)         Изучение влияния температуры на поведение полученных полимер-металлических комплексов;

3)         Изучение влияния состава растворителя на поведение полученных полимер-металлических комплексов;

4)         Изучение каталазной активности полученных полимер металлических комплексов.

При изучении процесса комплексообразования мною был использован метод рН-метрического титрования образовавшегося полимерметаллического комплекса в мольном соотношении [металл] - [лиганд]=1:1.Также было проведено рН-метрическое титрование чистого полимера. В обоих случаях титрование проводилось 1н. раствором HCl, так как ПВПД является полиоснованием. Кривые рН-метрического титрования изображены в виде графика, где по оси абцисс откладывались значения эквивалентов прилитой кислоты, а на оси ординат откладывались значения рН. График рН-метрического титрования 1н. соляной кислотой чистого 0,1н. раствора поливинилпирролидона представлен в приложении на рисунке №1. Плавно убывающая кривая означает течение реакции нейтрализации, и постепенное накопление протонов в растворе, что и объясняет постепенное снижение рН. Кривая рН-метрического титрования 1н. соляной кислотой смеси, состоящей из 5мл. 0,1н. раствора ПВПД и 5мл. 0,1н. раствора CdCl2 также представлена в приложении на рисунке №2, в сравнении с кривыми титрования смесей 5мл. 0,1н. раствора Co(NO2)2 и 5мл. 0,1н. раствора ПВПД, и смеси 5мл. 0,1н. раствора FeSO4 и 5мл. 0,1н. раствора ПВПД. В самом начале кривая титрования для ионов Cd2+ и Co2+ в смеси с полимером имеет резкий скачок при рН от 6,3 до 3,2 и от 4,1 до 2,5 соответственно. Это позволяет с уверенностью сказать об образовании мономолекулярного комплекса. Титрование в этом случае было проведено три раза и было выведено среднее арифметическое значение рН (смотрите таблицу в приложении). Однако, при титровании смеси соли железа (II) с полимером не наблюдалось скачков рН при титровании. Это указывает на то, что металлполимерный комплекс не образовался, как в предыдущих случаях.

Одним из специфических методов исследования полимеров является метод вискозиметрии в разбавленных растворах полимеров. Он позволяет наблюдать изменение вязкости полимера в присутствии различного вида растворителей, а также солей металлов. Таким образом, мной было исследование изменения вязкости полимера в присутствии растворителя-воды и изменение вязкости при добавлении к раствору полимера порций солей металла (FeSO4, Co(NO2)2, CdCl2). Предположительно, взаимодействие полимера с металлом осуществляется через карбонильный кислород полимера. Также мной изучено действие растворителя и температуры на устойчивость полимерных комплексов. На рисунке №3 показано изменение приведенной вязкости (ось ординат) от разбавления (ось абцисс) в отсутствии ионов металла. Из графика виден рост приведенной вязкости, что объясняется силами электростатического взаимодействия между одинаково заряженными звеньями макромолекулы, а также молекулами воды. На рисунке №4 изображена кривая приведенной вязкости ПВПД в присутствии ионов металлов Fe2+, Cd2+, Cо2+ . Ранее методом потенциометрического титрования было доказано отсутствие комплексообразования в системе ПВПД-Fe2+, однако, мною был проведен подтверждающий эксперимент методом вискозиметрии. На рисунке видно, что высокое значение приведенной вязкости чистого раствора полимера при разбавлении солью металла резко снижается, что можно объяснить связыванием ионов металла с макромолекулами полимера, что, в свою очередь, приводит к уменьшению гидродинамических свойств последних. Такое изменение приведенной вязкости чистого полимера характерно для разбавления его солями Co2+, Cd2+. Однако при разбавлении ионами железа наблюдается сильное повышение приведенной вязкости. Это указывает на отсутствие взаимодействия ионов железа с полимером, а приведенная вязкость возрастает из-за сил электростатического взаимодействия звеньев полимера с молекулами растворителя. Таким образом, мною было доказано двумя различными по исполнению методами отсутствие взаимодействия ионов железа (II) с ПВПД и образование комплексов ПВПД-Cd2+ и ПВПД-Co2+.

Далее мною была исследована прочность полученных металлполимерных комплексов. Изучалось влияние на прочность температуры и состава растворителя.

На рисунке №5 представлены кривые приведенной вязкости комплексов ПВПД-Cd2+ и ПВПД-Co2+ в зависимости от состава растворителя Н2О:С2Н5ОН. Кривая 1 (ПВПД-Co2+) отображает поведение данного комплекса от состава растворителя. Как видно из рисунка, наблюдается увеличение приведенной вязкости (от 0,1 до 0,37) с увеличением объемных процентов этилового спирта, что свидетельствует о раскручивании полимерного клубка. Кривая 2 (ПВПД-Cd2+) отображает приведенную вязкость данного комплекса по сравнению с вязкостью комплекса ПВПД-Co2+. Как видно из кривой, вязкость комплекса имеет низкие значения (от 0,13 до 0,19) вне зависимости от состава растворителя, что указывает на его высокую прочность и устойчивость к растворению органическими растворителями.

Также было проведено изучение изменения вязкости образовавшегося комплекса от температуры. Нужно отметить, что все предыдущие исследования по изменению вязкости проводились при постоянной температуре 25 °C. В данном же случае проведены исследования при 25, 40, 60°С. Как видно из построенного графика (рисунок №6) наблюдается рост приведенной вязкости с повышением температуры в обоих случаях. В перспективе же возможно выпадение осадка или же переход раствора в состояние геля. Именно поэтому при более высоких температурах измерение вязкости металлполимерных комплексов не рекомендуется, так как возможно засорение капилляра вискозиметра.

Далее мною проводились эксперименты по изучению каталазной активности полученных металлполимерных комплексов. Проверялась их ускоряющая способность реакции разложения пероксида водорода. Использовались соотношения металл: лиганд=1:1, 1:2, 2:1, 1:4, 1:6. Данные соотношения были выбраны, исходя из координационных чисел иона-комплексообразователя (у Cd и Co координационные числа могут быть 2, 4, 6). Судя по полученным данным, мы можем сказать, что использование растворов полученных металлполимерных комплексов в качестве катализаторов обоснованно, так как они ускоряют данную химическую реакцию, но нецелесообразно, так как ускорение реакции минимально. Самой высокой каталазной активностью обладают комплексы кадмия в соотношении металл: лиганд=1:1 и 1:4. Комплексы кобальта же проявляют самую малую каталазную активность. Однако, если рассматривать графики №13,14,16 то можно выявить постепенное (и достаточно интенсивное для данного случая) увеличение степени разложения пероксида водорода по времени, что указывает на стабильность полученного катализатора.


Выводы

1. Методами рН-метрического титрования и вискозиметрии обнаружено и доказано комплексообразование в системе поливинилпирролидон-Cd2+ и Co2+. Обнаружено, что поливинилпирролидон не образует комплексы с железом (II) в данных условиях.

2. Изучено влияние температуры на стабильность образовавшихся комплексов. Было выяснено, что повышение температуры ведет к повышению приведенной вязкости, что свидетельствует о деструкционных процессах полимер-металлических комплексов.

3. Изучено влияние состава растворителя на стабильность металлполимерных комплексов. Обнаружено, что комплекс ПВПД- Cd2+ почти не изменяет приведенной вязкости с увеличением объемных процентов спирта этилового С2Н5ОН, что указывает на его прочность к действию органических растворителей. С другой стороны, комплекс ПВПД-Со2+ сохраняет свои характеристики только в водной среде.

4. Изучена каталазная активность полимер-металлических комплексов, и выяснено, что растворы данных комплексов обладают малой каталазной активностью. Обнаружено, что наилучшим соотношением [металл]: [лиганд] является соотношение 1:1 и 1:4.


Список литературы

1. А.А. Берлин, В.Е.Басян. «Основы адгезии полимеров», «Химия». М., 1969г.

2. Я.О.Бикерман. «Высокомолекулярные соединения», «Химия», 1968г.

3. Е.А. Бектуров, Л.А. Бимендина «Интерполимерные комплексы», «Наука Каз. ССР», А.-Ата, 1977г.

Страницы: 1, 2, 3, 4, 5, 6


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.