скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Исследование физико-химических и прикладных свойств новых полимерных композиционных материалов на основе слоистых силикатов и полиэлектролитов

Разработан метод низкотемпературной активации хемосорбированного коксового слоя сорбента (палыгорскит-монтмориллонитовая глина), при которой в значительной степени сохраняются адсорбционные свойства исходной минеральной матрицы, т. е. сохраняется ее способность сорбировать неионогенные ПАВ типа ОП-10 и катионные ПАВ. При этом сорбент приобретает свойства активного угля поглощать производные бензола. Показано, что активный углерод на поверхности мезо- и макропор минеральной матрицы формируется в кластеры с линейными размерами 5 - 9 нм, покрывающие около 40-60 % исходной поверхности минерала и, таким образом, блокирующие наиболее активные гидрофильные центры минеральной матрицы. В оставшиеся незанятые мезопоры могут эффективно сорбироваться большие молекулы соединений, например, анионных красителей. Поглощение сравнительно небольших молекул осуществляется за счет поверхностной пористости угольных кластеров УМС.

Существенными технологическими свойствами УМС, полученном на основе закоксованной палыгорскит-монморилло-нитовой глины, является его более высокая, чем у активных углей, прочность и водостойкость гранул. Это позволяет примнять УМС в качестве зернистого фильтрующего материала для удаления из воды эмульгированных масел. Исследование [56] показало, что УМС обладает высокой нефтеемкоестью (0,55 г/г материала), превосходя по этому показателю кварцевый песок (0,06 г/г/), антрацит (0,20 г/г) и несколько уступая активному углю АГ - 3 (0,80 г/г). При трехступенчатой схеме фильтрования с использованием УМС содержание эмульгированных нефтепродуктов в воде снижается с 24 до 0,56 мг/дм3.

Значительным достижением в области синтеза сорбционных материалов является разработка методов получения полусинтетических микропористых сорбентов на основе слоистых силикатов с расширяющейся структурной ячейкой и основных солей алюминия, титана, хрома и др., - так называемых пиллар-глин или PILC-сорбентов (pillared interlayer clay-сорбентов). Первое сообщение о сорбенте подобного типа с резко увеличенной доступной поверхностью касалось термостабильного материала с открытыми щелевидными порами шириной τ=0,8нм, сформированными при внедрении гидроксокатионов алюминия в межслоевые промежутки минерала [57]. В последние годы число публикаций, посвященных получению и свойствам PILC-сорбентов, резко возросло. Имеется ряд обзоров на эту тему (например).

В основе получения таких сорбентов лежит реакция замещения межслоевых обменных катионов исходного минерала на олигомерные гидроксокатионы, для алюминия это, главным образом, ионы состава:

[А113О4(ОН)28(Н2О)8 ] 3+,

устойчивые в водном растворе в интервале рН = 3,7-4,3 и мольном отношении ОН/А1; n = 1,2-2,3 [59].       

Важной особенностью PILC-сорбентов является наличие в их структуре открытых щелевидных микропор (толщиной 0,7 - 0,8 нм для Аl 13-монтмориллонита), образующихся в результате прочной межслоевой сорбции олигомерных неорганических катионов. Эти катионы занимают около половины внутренней поверхности порового пространства (S =750 м2/г для Аl 13 - монтмориллонита), вторая половина (до S = 400 - 430 м2/г) остается доступной для адсорбции. Преимуществом PILC-сорбентов по сравнению с синтетическими цеолитами является их большая открытая микропористость, что улучшает кинетику сорбционных и каталитических процессов, а также относительная дешевизна, что немаловажно для применения их в процессах чистки воды.

При переходе от исходного натриевого к Аl13-монтмориллониту коэффициент гидрофильности резко уменьшается, хотя, конечно, не достигает значения, характерного для гидрофобного цеолита типа ZSM - 5. На уменьшение фильности Аl13 -мoнтмориллонита по сравнению с исходным минералом и появление на его поверхности щелевидных микропор гидрофобных участков указывается также в работе.

В целом, чистые PILC-сорбенты являются гидрофильными материалами. Однако наличие гидрофобных участков и координационно ненасыщенных атомов А13+, принадлежащих кластерам Аl 13, создает благоприятные условия для сорбции на этих материалах ряда органических веществ. Например, сообщается [63] о селективной сорбции Аl 13-сорбентами диоксинов. Соединения с молекулами меньшего размера (типа фенола) сорбируются из водных растворов PILC-сорбентами менее избирательно по сравнению с активным углем, но намечены пути повышения сорбционной способности этих материалов.

Применительно к современной технике хроматографического анализа и для методов очистки воды на намывных фильтрах требуются селективные сорбенты с улучшенными кинетическими характеристиками. Такими материалами являются полусинтетические поверхностно-пористые сорбенты с развитой системой поверхностных микропор. Например, к типу данных сорбентов относится цезий-цетилпиридиниевый монтмориллонит (Cs - ЦПМ) - высокоселективный, эффективный хромате графический сорбент [66, 67]. Введенные обменный комплекс монтмориллонита большие катионы Cs+ существенно увеличивают вклад боковых граней кристаллов во внешнюю поверхность минерала и таки образом повышают его адсорбционно-разделительную способность. Этот сорбент позволяет проводить разделение близко кипящих органических веществ за счет наличия поверхностных микропор шириной 1,3 нм и глубиной 0,6 нм [68], расположенных на боковых гранях кристаллов.

Эффективное разделение изомеров обеспечивает комплексный трехфазный сорбент Cs-ЦПМ + ПФМС-4 + хроматон N-AW-HMDS (соотношение Cs-ЦПМ: жидкая фаза ПФМС- 4 = 3:1).

Термоокислением вспученного перлита гидрофобизованного ГКЖ - 94М, получен эффективный поверхностно-пористый сорбент для поглощения растворенных эмульгированных в воде нефтепродуктов. Размеры поверхностных микропор сорбента, определенные с помощью газохроматографического варианта метода молекулярных щупов, составляют 1,2 х 0,5 нм. В заключение следует отметить, что большая практическая значимость природных минералов стимулирует исследования, направленные на получение новых адсорбционно-активных материалов и природных сорбентов и рациональных технологий их применения в промышленности.

ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1 Методика модификации бентонитовой глины месторождения «Герпегеж»

Получение органоглины из глинистого минерала осуществляли в две стадии. Первая стадия представляла собой операцию по концентрированию монтмориллонита путем удаления из глины балластных веществ, а вторая - перевод глинистого минерала в натриевую форму, удобную для получения органоглины.

Для концентрирования монтмориллонита применяли обычное отмучивание, т.е. промывание дистиллированной водой и удаление кальцита путем перевода его в хлорид кальция при обработке золя глины 10%-ным раствором соляной кислоты. Нейтрализацию кислотой золя глины осуществляли до тех пор, пока не прекратится образование пузырьков углекислого газа. Соляную кислоту в золь добавляли малыми порциями, так, чтобы после прекращения реакции значение рН было не менее 3. Далее глинистый минерал промывали водой многократной декантацией.

Степень очистки от балластных веществ определяли по результатам ИК-спектроскопии по исчезновению пиков, относимых к кальциту.

Натриевая форма глины синтезирована при обработке золя (в которой отсутствуют балластные вещества) 1 М раствором хлорида натрия. Через трое суток проводили отмывку глины от избытка хлорида натрия декантацией водой. Полученный золь натриевой формы глины был исходным реагентом для преобразования в органоглину: сначала приготавливали суспензию бентонита в воде путем перемешивания на магнитной мешалке в течение 2 часов, затем к суспензии добавляли мономеры и перемешивали еще 4 часа.


2.1.1 Методика синтеза полимерных нанокомпозитов

К суспензии органомодифицированного гуанидинсодержащими мономерами бентонита в воде добавляли радикальный инициатор персульфат аммония и перемешивали 30 минут. После этого суспензию продували азотом, разливали по ампулам со шлифами, изолировали от воздуха стеклянными пробками. Полимеризацию проводили в течение 1 ч при 60°С. Полученные композиты промывали дистиллированной водой и помещали в избыток дистиллированной воды на сутки.

2.2 Физико-химические методы исследования синтезированных соединений

Термофизические методы исследования. Фазовое поведение систем изучали на дифференциальном сканирующем калориметре “Mettler” марки ТА 4000 с нагревательной ячейкой DSС 30 при скорости нагревания 10 град× мин-1 в атмосфере Ar.

Термическую устойчивость изучали методом дифференциального термического анализа (ДТА) и дифференциальной термической гравиметрии (ДТГ) на дериватографе ОД-102 (фирма МОМ, Венгрия) на воздухе при скорости нагревания 2.5 град× мин -1 от 20 до 500 °С и 1000 °С.

Удельную поверхность композитов и распределение частиц по размерам исследовали на лазерном анализаторе частиц “MicroSizer 201”. Ультразвук=200 W, время диспергирования 60 сек., коэффициент пропускания=79.

Съёмку рентгенограмм проводили по ГОСТ 21216.10‑93 на дифрактометре ДРОН‑1,5, работающем в режиме УРС, на Cu Kα излучении с никелевым фильтром.

ИК-спектры снимали на спектрометре «Specord 75 IR». Микроскопические исследования проводили с помощью поляризационного микроскопа МП‑3 и растрового электронного микроскопа Quanta‑200, оснащённого системой энергодисперсионного анализа EDAX Genesis.

Химический состав образцов определяли в соответствии с методическими рекомендациями научного совета аналитических методов Всесоюзного института минерального сырья, состав ионообменного комплекса согласно требованиям ГОСТ 28177‑89, в лаборатории Ростовской геологоразведочной экспедиции.

Исследование адсорбции органического красителя метиленового голубого проводили согласно требованиям ГОСТ 21283‑93.

Удаление крупнозернистых включений бентонита проводили мокрым методом. Модифицирование карбонатом и пирофосфатом натрия осуществляли пластифицированием густой пасты в течение 48 ч. Кислотное модифицирование проводили серной кислотой при комнатной температуре.

2.3 Методика определения сорбционных характеристик объектов исследования

В качестве красителя для оценки сорбционных свойств композитов на основе мономерного и полимерного метакрилата гуанидина и Na+ММТ использовали водорастворимый краситель метиленовый синий (голубой) 3,7-бис (диметиламино)фетазин.

Для построения кривой адсорбции в пробирки наливали по 50 мл рабочего раствора красителя, затем засыпали 0.4; 0.5; 0,6; 0.7; 0.8; 0.9 г композита. Пробирки с раствором взбалтывали и оставляли на сутки, затем фильтровали отдельно содержимое каждой колбы через бумажные фильтры. Отбирали 1 мл отфильтрованного раствора, помещали в кювету, фотометрировали при длине волны λ=750 нм.

Равновесную массу метиленового синего в растворе находили по градуировочному графику. Для построения градуировочного графика (рис. 93) отбирали 40 мл приготовленного рабочего раствора в мерную колбу объемом 200 мл с С = 0.2 мг мл-1 и доводили до метки дистиллированной водой. Затем в мерные колбы на 50 мл вливали 1, 2, 3, 4, 5, 6 мл этого раствора красителя и доводили до метки водой.

Рис. 1. Градуировочный график определения метиленового синего

На основании табличных данных определяли lg х/m. Изотерму адсорбции построили, исходя из подчинения уравнению Фрейндлиха в логарифмической форме:


ГЛАВА III. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

3.1 Исследование качественного минерального состава бентонита Центрального месторождения «Герпегеж»

В результате комплексного исследования качественного минерального состава бентонита методами рентгенографии, термогравиметрии и микроскопии (рисунки 1‑3) определено, что основным минералом бентонита Центрального месторождения «Герпегеж» является монтмориллонит. На рентгенограмме монтмориллонит диагностируется наличием серии типичных рефлексов (рисунок 1). Установлено присутствие кварца, каолинита, гидрослюды.

Рис. 1 –Рентгенограмма природного бентонита

Рентгенодифракционные исследования образцов глины проводили в интервале углов 2q от 2,0° до 40,0°.

Дифрактограмма природной глины содержит характерный пик в области 2q =7,53° (d =1.1 нм), соответствующий Брегговскому периоду расположения гетерогенных областей и отвечающий за расстояние между базальными поверхностями монтмориллонита (рис.1).

На дифференциально-термических кривых бентонита (рис. 2) обнаруживается ряд термических эффектов. При температурах 100‑110 °С наблюдается интенсивный эндотермический эффект, обусловленный выделением адсорбционной и межслоевой молекулярной воды. Наличие дополнительного эффекта при температурах с максимумом 500‑505 °С вызвано удалением структурной воды.

Рис. 2 – Дифференциально-термические кривые природного и модифицированного бентонитов: 1 – природного, 2 – обогащенного, 3 – модифицированного серной кислотой, 4 модифицированного карбонатом натрия

При изучении морфологии природного бентонита с помощью микроскопии в образцах отмечены образования монтмориллонита, зерна кварца округлой формы, слюдистые фрагменты, остатки кремнистых скелетов микроорганизмов – единичные спикулы губок, частицы опала в виде панцирей диатомей плохой сохранности.

На электронных микрофотографиях бентонита (рис. 3) частицы монтмориллонита имеют вид крупных и мелких чешуек в форме листовых агрегатов. Встречаются агрегаты с хлопьевидными очертаниями, складчатые образования. Видны частицы, отличающиеся по размерам и форме, объединенные в ультрамикроагрегаты и агрегаты со слабо- и высокоориентированным в микроблоки расположением. По типу, связанному с составом и условиями образования, по классификации Е.М. Сергеева, микроструктура исследованных образцов отнесена к ячеистой, характеризующейся образованием крупных микроагрегатов, контактирующих между собой по типу базис-базис, базис‑скол. Отмечаются поры: межчастичные, образованные неплотностями прилегания первичных частиц; межмикроагрегатные, большей частью щелевидные, различных размеров.

Рис.3 Электронные микрофотографии спектры частиц природного бентонита

Химический состав бентонита представлен ионами натрия, кальция, калия и магния (таблица 2). Ввиду преобладания катионов кальция и магния, ионообменный комплекс бентонита относится к щелочноземельному типу.


3.2 Обогащение и модификация природного бентонита

Удаление крупнозернистых включений при обогащении, преимущественно кварца, приводит к перераспределению доли компонентов в составе бентонита. Отмечается увеличение содержания монтмориллонита. За счет удаления кварца, количество оксида кремния снижается до 72,30 %, содержание оксидов алюминия, калия, натрия, кальция и магния увеличивается.

Кислотная обработка приводит к частичному разрушению глинистых минералов, что иллюстрируется уменьшением содержания полуторных оксидов в химическом составе образцов. Количество оксида кремния увеличивается до 75,20 %, свободного оксида кремния – до 19,20 %.

Рентгеновским методом установлено, что образовавшийся в результате разрушения кристаллической структуры монтмориллонита кремнезем является аморфным. В ходе замещения обменных ионов металлов на ионы водорода кислоты и ионы алюминия, которые переходят из структурных позиций в обменные, поверхность бентонита приобретает кислые свойства.

Таблица 2

Состав природного и модифицированного бентонитов

Катионы Содержание катионов, ммоль/100 г сухого вещества
Бентонит
природный обогащенный модифицированный
Серной кислотой Карбонатом натрия

Na+

8,4 8,6 1,3 38,1

K+

1,4 1,5 0,6 2,0

Ca2+

13,3 16,6 15,0 5,1

Mg2+

12,8 13,1 6,0 3,0
Суммарно 35,9 39,8 22,9 48,2

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.