скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Исследование процессов испарения и конденсации жидких капель

которая не определена при a = 3. Хотелось бы отметить, что именно a = 3 было предсказано на основании постоянства ∆V/∆ln(r). Если взять интеграл от rmin до rmax , то общий объем частиц составит:

.           (1.15)

Если a > 3, то получим:

.                       (1.16)

А если a < 3, то:

.                       (1.17)

Если  rmin много меньше rmax,тогда из уравнения (16) следует, что объем

пропорционален  и весьма слабо зависит от  rmin. Если a < 3, то общий объем в основном определяется rmin. Следовательно, если состав систематически меняется с изменением размера, то в зависимости от тангенса угла наклона a средний состав аэрозоля будет меняться очень сильно.

• Общая площадь. В некоторых случаях эта характеристика очень важна. В зависимости от того, a  < 2 или a > 2, доминируют большие или меньшие частицы. Коэффициент оптической экстинкции в грубом приближении пропорционален площади поверхности частицы вплоть до rmin ≈ 0.5λ, где λ - длина волны. Состав частиц (из оптических измерений) будет определяться концом интервала радиусов для a ≈ 3 (то есть оптическое поведение системы будет определяться размером в десятые доли мкм). Если a < 2, то происходит сдвиг в сторону больших частиц.

1.6.2 Гамма-распределение.

Закон распределения имеет вид:

,                                           (1.18)

он обеспечивает экстремум функции распределения при rextr = b-1 и убывание функции - медленное при уменьшении радиуса и экспоненциально быстрое при r > rextr. Однако теоретическое исследования в области сухих аэрозолей и экспериментальные данные подтверждают, что при r < rextr функция распределения также убывает по экспоненте. Лучшее приближение к экспериментальным данным можно получить, если в качестве аргумента взять обратный радиус или какую-либо другую отрицательную степень.

Такие распределения, известные как гамма - распределения, удобны для машинных расчетов, однако представляют всего лишь удобную аппроксимацию экспериментальных данных и не имеют под собой никакой теоретической основы.

Можно легко получить выражение для определения первого момента гамма - распределения. Если принять, что

  ,                                     (1.19)

то легко взять интеграл вида

,        (1.20)

где Г - соответствующее значение γ-функции:

                                  (1.21)

в точке . Это очень удобное свойство позволяет выбирать функцию  таким образом, чтобы удовлетворить экспериментально найденным среднему значению, моде, ширине и кривизне, или любым трем моментам, выбрав соответствующим образом b, β и λ.

1.6.3 Логарифмически-нормальное распределение.

Гауссово (нормальное) распределение симметрично относительно своего среднего значения (которое одновременно является модой и медианой) и принимает ненулевые значения, когда модуль аргумента стремится к бесконечности. Нормальная кривая, в которой аргументом является радиус, по вышеупомянутой, а также по ряду других причин плохо аппроксимирует распределения по размерам, наблюдаемые в природных и искусственных аэрозолях. Здесь и заложена логическая причина, по которой используют логарифмический аргумент. Другая причина может быть сформулирована следующим образом. Пусть мы решаем задачу синтеза искусственного аэрозоля, состав которого задан средним размером частиц. Из изложенного в предыдущих разделах следует, что при среднем размере частиц в 1 мкм невозможно ожидать равномерного образования частиц с радиусом 0,1 мкм и 1,9 мкм. Несомненно, в большей степени одинакова вероятность найти частицы с радиусом ar и a1r. Таким образом, нормальное логарифмическое распределение - это просто нормальная кривая, аргументом которой является ln(r). Нормальное распределение по аргументу x, которое задается формулой:

,                             (1.22)

где N0 - общее число частиц; σ - стандартное отклонение, может быть записано в единицах r. Заметим, что σ, будучи средним ln(x), в единицах радиуса соответствует отношению r. Так σ = 0, 3 означает, что точки с  располагаются на расстоянии  и , где , и, таким образом,  представляет собой среднее геометрическое радиуса. Если использовать радиус в качестве аргумента, то нормальное логарифмическое распределение будет иметь вид:

                            (1.23)

Природные аэрозоли в большинстве случаев не характеризуются симметрией, присущей нормальному логарифмическому распределению. Искусственные системы хорошо им описываются, поскольку при получении искусственных аэрозолей обычно преследуется одна цель - получить частицы определенного среднего размера в рамках узкой фракции.

Еще раз подчеркнем, что распределения Юнга основано на экспериментальных данных о природных аэрозолях. Математические операции с такими распределениями чаще всего возможны только с определенным приближением, а решения уравнений являются численными. Математически строгие обратно-степенное, гамма, и логарифмическое нормальное распределения удобны с точки зрения математической обработки, но, за исключением этого смысла, их использование не обосновано ни экспериментально, ни теоретически. Распределение Юнга, особенно в случае, если a - переменная величина и нижняя граница rmin минимальна, обеспечивает достаточно гибкое представление с хорошими коэффициентами корреляции.


2.        Состояние проблемы и постановка задачи.

2.1    Газокинетические процессы в дисперсной системе

2.1.1 Непрерывная и дискретная динамика.

Исследование динамики аэрозолей в среде (в том числе в воздухе), необходимо определить, с точки зрения процессов переноса. В свободно - молекулярном режиме молекулы среды перемещаются по прямой, пока не столкнутся с другой молекулой, после чего, молекула изменяет направление, до того момента, пока вновь не столкнётся с другой молекулой, и так далее. Среднее расстояние, пройденное молекулой между столкновениями с другими молекулами, называется длиной свободного го пробега. В зависимости от относительного размера частицы, находящейся в среде и средней длины свободного пробега, отличают два случая.

·          Если размер частицы намного больше, чем средняя длина свободного пробега окружающих молекул, система ведет себя, как непрерывная среда. Движение такой частицы подчиняется законам диффузии.

·          В другом случае, если частица намного меньше, чем средняя длина свободного пробега окружающих молекул, то она (частица) ведёт себя как большая молекула. В этом случае говорят о свободно - молекулярный режим.

Ключевой в нашем случае, безразмерный параметр, который определяет характерные свойства среды относительно частицы, - число Кнудсена.

                                       (2.1)

где λ- длина свободного пробега, D – диаметр частицы, а R, соответственно, её радиус. Таким образом, число Кнудсена - отношение двух метрических параметров.

Прежде, чем обсуждать роль числа Кнудсена, мы должны рассмотреть вычисление средней длины свободного пробега для пара. Так же необходимо вычислить среднюю длину свободного пробега для чистого газа и для газов, составленных из смесей нескольких компонентов. Заметим, что воздух, в основном, состоит из смеси кислорода с азотом, однако общепринято говорить о средней длине свободного пробега воздуха, , как будто воздух - отдельная химическая разновидность.

Начнём с самого простого случая, когда частица, находится в чистом газе B. Если нас интересует природа газа – носителя, то мы должны рассчитать средний путь свободного пробега, который появляется при определении числа Кнудсена, - . Индекс обозначает, что мы интересуемся столкновениями молекул B друг с другом. Длина свободного пробега была определена, как среднее расстояние, которое проходит молекула B между столкновениям с другой молекулой B. Средняя скорость газовых молекул B, -  (Moore, 1962):

,                                     (2.2)

где MB - молекулярный вес молекулы B. Отметим, что большие молекулы перемещаются более медленно, в то время как средняя скорость газа увеличивается с температурой. Средняя скорость молекулы азота при температуре 298К, согласно (8.2) равна 474 м/c, а кислорода – 444 м/c.

Давайте оценим то, что случается с молекулой B в течение единицы времени, скажем, секунды. В течение этой секунды молекула перемещается, в среднем, на расстояние, равное этому промежутку времени (секунда), умноженному на скорость молекулы. Если в течение той секунды молекула подвергается некоторому числу столкновений – Zbb, то ее средняя длина свободного пробега будет равна, по определению,

                                               (2.3)

Таким образом, чтобы вычислить среднюю длину свободного пробега молекулы, мы должны сначала вычислить число столкновений Zbb. Пускай,  - диаметром молекулы B. За 1 секунду молекула перемещается на дистанцию  и сталкивается со всеми молекулами, центры которых находятся в цилиндре радиуса  и высоты . Отметим, что две молекулы диаметра  сталкиваются тогда и только тогда, когда расстояние между их центрами . Если  - число молекул B в единице объёма, то число молекул в вышеупомянутом цилиндре - . Итак, мы вычислили число столкновений, предполагающих, что одна молекула B перемещается, в то время как остальные молекулы неподвижны, в результате чего недооценили частоту столкновений. Вообще, все частицы перемещаются в случайных направления, и мы должны описать это движение, оценивая их относительную скорость. Если две частицы перемещаются в противоположных направлениях, их относительная скорость - 2. Если они двигаются в одном направлении, их относительная скорость - ноль, в то время как при движении под углом в 90° их относительная скорость - . Можно доказать, что последняя ситуация определяет среднее число, таким образом:

                                     (2.4)

и средняя длина свободного пробега:

                                        (2.5)

Видно, что чем больше размер молекулы, , и выше газовая концентрация, тем меньшее значение принимает средняя длина свободного пробега.

К сожалению, даже притом, что (2.5) обеспечивает достаточно неплохую зависимость длины свободного пробега от газовой концентрации и размера молекулы, она не удобна для использования, потому что необходимо знать диаметр молекулы , так же, большинство молекул вовсе не являются сферическими. Окончательно вс усугубляет то, что средняя длина свободного пробега газа не может быть измерена непосредственно. Однако, она может быть теоретически связана с измеримыми газовыми макроскопическими свойствами, типа вязкости, коэффициента теплопроводности, или молекулярного коэффициента диффузии. Таким образом, можно использовать вышеупомянутые газовые свойства, чтобы оценить теоретически среднюю длину свободного пробега в газе. Например, длина свободного пробега чистого газа может быть связана с газовой вязкостью, соотношением, что следует из кинетической теории газов:

                                  (2.6)

где - газовая вязкость, p - газовое давление, и MB - молекулярный вес B.

Таким образом, для стандартных атмосферных условий, если диаметр частицы является большим, чем приблизительно 0.2, Kn < 1, и с точки зрения атмосферных свойств, частица находится в непрерывном режиме. В этом случае применимы уравнения механики сплошной среды. Когда диаметр частицы является меньшим, чем 0.01, частица существует в более или менее разреженной среде, и ее свойства переноса должны быть получены из кинетической теории газов. Этот режим, когда Kn >> 1 называют свободно молекулярным режимом. Промежуточное звено, когда размер частицы заключён между этими двумя значениями (0.01  и 0.2) называют переходным режимом.

Теперь перейдём к рассмотрению более интересного случая – определению длины свободного пробега газа в бинарной смеси. Если мы интересуемся диффузией молекулы пара к частице, которые содержатся в фоновом газе B (например, в воздухе), тогда описание диффузионного процесса, зависит от значения числа Кнудсена, определение которого основано на среднем длине свободного пробега . Отметим, что, если концентрация молекул A – на несколько порядков ниже чем концентрация молекул фонового газа B (воздух), столкновениями между молекулами А можно пренебречь. Столкновения между молекулами А и B фактически равны общему количеству столкновений. Число Кнудсена определяют так:

                                              (2.7)

теперь мы должны оценить. Джинс (Jeans) показал, что средняя длина свободного пробега молекул A, , в бинарной смеси A и B - (Davis, 1983)

                            (2.8)

где  и  - молекулярные концентрации частиц A и B,  и  - ударные диаметры для бинарных столкновений между молекулами A и молекулами A и B, соответственно, где

                                         (2.9)

Страницы: 1, 2, 3, 4, 5, 6


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.