скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Діоди

 

1.3 Силові діоди.

Діоди, які  використовуються в електричних пристроях для перетворення змінного струму в струм одн полярності називаються випрямними. На вольтамперній характеристиці (ВАХ) Значення прямого й зворотного струмів відрізняються на кілька порядків, а пряме спадання напруги не перевищує одиниць вольтів у порівнянні зі зворотною напругою, що може становити сотні й більше вольтів. Тому діоди мають однобічну провідність, що дозволяє використати їх як випрямні елементи. З малюнка також можна зробити висновок, що з ростом температури зворотний струм зростає. У більшості діодів цей струм при температурі 125ºС може збільшиться на 2-3 порядки в порівнянні з струмом при 25ºС

Зі збільшенням зворотної напруги зворотний струм також росте, але повільніше, ніж з підвищенням температури. Лише при подачі зворотної напруги, більше нормованої, відбувається різке його збільшення, що може привести до пробою p – n-переходу.

Пряма напруга при малих прямих струмах, коли переважає спад напруги  на переході діода, з ростом температури зменшується. При більших струмах, коли переважає спад на баз діода, залежність прямої напруги від температури стає позитивною. Точка, у якій відсутня залежність прямого спаду напруги від температури або ця напруга міня знак, називається точкою інверсії.

У більшост діодів малої й середньої потужності допустимий прямий струм, як правило, не перевищує точки інверсії, а в силових потужних діодів допустимий струм може бути вище цієї точки.


Розділ 2. Загальні відомост про напівпровідникові розмикачі струму.

Нано- і субнаносекундні електричні імпульси піковою потужністю від мегават до терават використовуються в цілому ряді областей найсучаснішої техніки, таких як релятивістська надвисокочастотна електроніка, широкополосна радіолокація, дослідження електромагнітно сумісності складних систем, підземна радіолокація, системи живлення лазерів і прискорювачів і т.п. Потужні коротк мпульси використовуються також й у цілому ряді напрямків сучасної експериментально фізики, наприклад, в області керованого термоядерного синтезу й в інших широкомасштабних фізичних експериментах.

Для генерування потужних наносекундных імпульсів два підходи, що розрізняються за способом нагромадження енергії – нагромадження в ємнісних накопичувачах (малоіндуктивн конденсатори й формуючі лінії) з наступною передачею енергії в навантаження через замикаючий ключ і нагромадження в магнітному полі індуктивного контуру зі струмом; в останньому випадку для передачі енергії в навантаження необхідно здійснити наносекундне розмикання великого струму. Другий метод представляє дуже великий нтерес для потужної імпульсної техніки, оскільки густина накопиченої енергії в індуктивних накопичувачах на півтора – два порядки більша, ніж у ємнісних, істотно менша вартість накопичувачів й, що теж істотно, імпульсна напруга на навантаженні при обриві струму може бути значно вища, ніж напруга на попередніх рівнях формування імпульсу. Однак швидкий обрив більших струмів, коли потрібно розмикати струми в десятки килоампер при мпульсній напрузі мегавольтного рівня, є значно більше складнішим, чим швидке замикання.

На стадії лабораторних експериментів ця проблема звичайно вирішується за допомогою плазмових розмикачів з нано- і мікросекундним накачуванням, інжекційних тиратронів. Однак для реального застосування, особливо в област промислових технологій, така елементна база не може бути використана - в основному через малий термін служби розмикачів, нестабільност спрацьовування й неможливості їхнього використання в періодично.

Зі звичайних приладів, що випускаються промисловістю, розмикання струму за час порядку 10 нс може бути здійснене в спеціальних типах польових транзисторів. Такий транзистор являє собою, по суті, силову інтегральну схему із сотень тисяч паралельно працюючих мікротранзисторів з розміром 10-15 мкм. Робоча напруга приладу кілька сотень вольт, струм десятки ампер, і для створення імпульсу потужністю, скажемо, 50 МВт розмикач повинен складатися з 104 транзисторів. Через очевидну складність і високу вартість таких систем питання про їхн створення навіть не обговорювалося.

Найпростішим напівпровідниковим розмикачем струму є звичайний діод. При проходженні через нього струму в провідному напрямку слабколегована п-база заповнюється електронно-дірковою плазмою внаслідок нжекції електронів і дірок через потенційні бар'єри п+п- і р+п-переходів. Потім через діод пропускається імпульс зворотного струму (мінус на р+-контакті), при цьому дірки із плазми витягаються зовнішнім полем через р+-, а електрони - через п+-контакти. Поки концентрація дірок поблизу р+п-переходу перевищує рівноважну, через діод протікає постійний струм, що обмежується опором навантаження - це фаза високої зворотної провідності (ВЗП).

Потім починає формуватися область об'ємного заряду (ООЗ), границя якої зміщується від р+п-перехода в п-базу, напруга на приладі зростає, а струм у ланцюзі зменшується - це фаза відновлення зворотного опору (ВЗО). Проблема, по суті, полягає в тім, як зробити цей процес досить швидким.

Вперше субнаносекундний напівпровідниковий розмикач був створений ще в 50-х роках минулого століття - це був так званий діод з нагромадженням заряду (ДНЗ). Конструктивно цей прилад надзвичайно простий: у пластині кремнію п-типу провідності, завдяки дифузії бору з поверхні, створюється р+п-переход і базова область із різким градієнтом концентрації, тобто із сильним вбудованим електричним полем. При протіканні прямого струму інжектовані цим переходом дірки при малому рівні інжекції гальмуються вбудованим полем поблизу інжектора. Потім через діод пропускається швидко наростаючий імпульс зворотного струму, накопичені дірки майже повністю виводяться на стадії високої зворотно провідності, після чого струм через діод різко, за , обривається, переходячи на підключене паралельно діоду навантаження. ДНЗ, безумовно, гранично простий розмикач із дуже гарною швидкодією, але напруга лавинного пробою такого р+п-переходу з високолегованою базою лежить у межах 10-50 В, а робочий струм становить сотн міліамперів, чого недостатньо для створення генераторів потужних високовольтних імпульсів.

Загалом кажучи, самий звичайний потужний високовольтний напівпровідниковий діод теж розмикачем струму при перемиканні із прямого на зворотний струм, причому розмикає потужність, що для одиничного приладу може бути дуже великою, порядку мегавата, але у звичайних умовах тривалість процесу розмикання лежить не в нано-, а в мікросекундному діапазоні. Фізика цього процесу в умовах високої густини зворотного струму була детально розглянута в роботах фізиків ще в 1967 р., і хоча нагромадження електронно-діркової плазми в п-базе р+пп+-структури при прямому струм розраховувалося без врахування всіх нелінійних ефектів, а процес відновлення р+п-переходу при протіканні великого зворотного струму розраховувався з рядом нереальних наближень (сталість у часі зворотного струму, незалежність рухливості носіїв від поля й др.), основні фізичні особливості процесу були визначен дуже чітко[3,4]. Насамперед, було показано, що спад до рівноважного значення концентрації носіїв у блокуючого р+п-переходу й початок формування там області об'ємного заряду не приводить до різкого спаду зворотнього струму, якщо на границі ООЗ область, заповнена електронно-дірковою плазмою; характер спаду зворотного струму контролюється процесами "розсмоктування" плазми саме в цій області. Розрахункова форма розподілу плазми при високому рівні інжекц в п-базе кремнієвої р+пп+-структури при протіканн прямого струму  і потім зворотного струму  при співвідношенні  показано. Видно, що плазмовий "резервуар" на границі ООЗ (ліва частина структури) снує тривалий час, визначаючи повільний спад зворотного струму й затягуючи процес вимикання. Несиметричність розподілу плазми при протіканні прямого струму й більша швидкість процесу відновлення в лівої границі, в бік якої витягуються зовнішнім полем дірки, пов'язані з тим, що в кремнії рухливість дірок втро менша рухливості електронів,.

Показано форму розподілу електронно-діркової плазми в п-базі кремнієвої р+пп+-структури при протіканні постійного прямого струму  (t = 0) і потім при протіканні зворотного струму . Товщина      п-базы d, дорівнює амбіполярній дифузійній довжині , де Dn- коефіцієнт амбвполярної дифузії, τ час життя носіїв у п-базі при високому рівні інжекції; п — середня концентрація плазми.

Схематичне зображення розподілу носіїв й утворення плазмових фронтів у п-базі з товщиною Wп при протіканн великого зворотного струму  у р+пп+-структур наведено нам на рис. 2.2. ООЗ - область об'ємного заряду. Нам показана також спрощена картина руху плазмових фронтів при протіканні зворотного струму після появи ООЗ. Фронти тут вважаються різкими, а концентрація плазми - постійною по координаті. Звичайно середня концентрація п плазми досить велика (1016 -1017 см-3 і час релаксації порушення нейтральності в ній малий (10-12 с), тому процеси виносу дірок вліво й електронів вправо жорстко взаємозалежні. Було показано, що в цих умовах швидкість руху лівої границі описується формулою 2.1:

 (2.1).

А лівої формулою 2.2:

 (2.2)

і в кремнієвому діоді, де , ліва границя рухається втроє швидше. Якщо щільність зворотного струму , де  - концентрація рівноважних електронів у п-базе, а - їхня насичена швидкість, то поле в ООЗ праворуч і ліворуч контролюється зарядом рухомих носіїв, тобто залежить від щільності струму.

В принципі, такий рівень розуміння процесу відновлення потужного діода при великій густині зворотного струму вже в 60-ті роки дозволяв сформулювати основні принципи створення потужного наносекундного діодного розмикача, однак це зроблено не було. Причиною був недостатній рівень розвитку потужно напівпровідникової імпульсної техніки того часу в цілому.


Розділ 3. Основні типи напівпровідникових розмикачів струму. 3.1. Дрейфовий діод з різким відновленням.

На даний час створено декілька основних типів напівпровідникових розмикачів великих струмів. У даній роботі ми розглянемо х основні види. І почнемо даний розгляд із дрейфових діодів із різким відновленням

Цілеспрямована робота зі створення потужного діодного наносекундного розмикача була розпочата на початку 80-х років минулого століття у Фізико-технічному інституті ім. А.Ф. Іоффе РАН (ФТІ РАН). Поштовхом послужили результати роботи [11], у якій досліджувалася можливість створення високовольтного силового діода із накопиченням заряду і було показано, що тривалість фази ВЗП збільшується, а фази ВЗО зменшується до величини менше 0,1 мкс у міру збільшення глибини залягання дифузійного р+п-переходу.

Залежність tвзо (1, 2) і tвзп (3, 4) від глибини залягання рп-перехода хр. Параметри діодів: питомий опір бази 50 Ом/см, товщина бази 100 мкм, час життя носіїв тр = 20 мкс. Тут слід зазначити, що діоди в цій роботі були створен за технологією для силового напівпровідникового приладобудування. Основною особливістю технології є те, що глибокі р+п-переходи виготовляються за допомогою спільної дифузії в повітряному середовищі бору й алюмінію з їхніх оксидів. Поверхнева концентрація А1 у цьому процес має строго визначену величину (5-7)·1016см-3, і тому дифузійний шар складається із двох областей: сильно легованої (~ 1019 см-3) "борної" р+-області глибиною 10-20 мкм і протяжної (80-120 мкм), відносно слабко легованої "алюмінієвої" області із плавно зменшуваним градієнтом концентрації домішки. Шоклі-рідовський час життя неосновних носіїв tп у цій області зменшується з ростом концентрації основних носіїв р і описується формулою (3.1):

 (3.1)

Значення часу життя рівне порядку десятка мікросекунд. Тому при протіканні прямого струму через такий р+рпп+-діод р-область виявляється "залитою" електронно-дірковою плазмою. При перемиканні відбувається швидке зменшення концентрації плазми в р+р-переході, однак, на відміну від ситуації з різким р+п-переходом, це не приводить до утворення ООЗ, оскільки в проведенні струму беруть участь основні носії р-шару. Плазмовий фронт переміщається по р-шару в бік рп-переходу, і лише при наближенні до нього цього фронту починає формуватися ООЗ і зменшуватися зворотній струм. Таким чином, збільшення глибини р+рп-переходу приводить до збільшення тривалості фази ВЗП і зменшенню тривалості ВЗО, оскільки до моменту утворення ООЗ значна частина заряду виявляється виведеною з діода. Саме така конструкція р+р-переходу надал використовувалася у всіх потужних наносекундних діодних розмикачах.

Як вже відзначалося вище, присутність електронно-діркової плазми на зростаючій границі ООЗ, гальмує процес розширення, тобто зменшує швидкість наростання напруги на діод й затягує спад струму. Тому, відповідно до сучасних уявлень, процес відновлення повинен протікати так, щоб рухомий плазмовий фронт в р-области від р+р- до рп-переходу, і фронт, що рухається по п-базе від п+п- до рп-переходу, зустрілися точно в площині рп-переходу. У цьому й тільки в цьому випадку протікання зворотного струму й розширення ООЗ буде відбуватися за рахунок швидкого руху тільки основних носіїв у протилежних напрямках від рп-переходу.

Однак тільки конструктивними засобами це здійснити досить складно. Так, якщо конструювати прилад з робочою напругою, наприклад, 1,7 кВ на основі кремнію п-типа провідності, звичайно використовуваного для потужних приладів, то максимальна ширина ООЗ й, отже, товщина п-бази повинна бути більше 140 мкм, а товщина р-області, виконаної дифузійним методом, не може бути більше, ніж 100-120 мкм. Тоді при більш-менш однорідному розподілі плазми в р- і п-областях приладу зустріч фронтів відбудеться в п-базі (оскільки швидкість руху фронту в р-області втроє більше), і обрив струму буде досить повільним. Наносекундний обрив струму в кремнієвому р+рпп+-діоді можна здійснити, якщо зробити тривалість імпульсу прямого струму досить малою для того, щоб більша частина загальної кількості виведеної плазми була зосереджена в р-області.

Основний експериментальний результат цих робіт наведений .

Через зразок проходив імпульс прямого струму IF з амплітудою 3 А і тривалістю від 0,4 до 1,2 мкс, а потім прикладався імпульс зворотної напруги, що наростає до 1,7 кВ за 40 нс (крива 4, IF = 0). Добре видно, як у міру зменшення tF скорочується час наростання напруги на діоді до ~ 2 нc при tF = 400 нc. Процеси, що відбуваються при цьому, схематично показані на рис. 3.3.

Рис. 3.3.

а) будова напівпровідникової структури; штриховою лінією показаний розподіл плазми після протікання короткого імпульсу прямого струму,

б) рух плазмових фронтів при протіканні імпульсу зворотного струму,

в) утворення ООЗ після закриття фронтів.

Досліджені р+рпп+-структури (рис.3.3а) виготовлені за допомогою спільної дифузії А1 В у п- Sі з концентрацією донорів 1014 см-3, глибина рп-переходу 120 мкм, товщина р+-шару 50 мкм, товщина п-бази 200 мкм, робоча площа 0,3 см2. п+-область виготовлена за допомогою дифузії фосфору на глибину 50 мкм. Форма розподілу плазми при накачуванні коротким (400 нс) імпульсом струму показана на рис. 3.3а штриховою лінією. Поблизу р+-шару формується тонкий шар електронно-діркової плазми з концентрацією порядку 1017 см-3, товщина якого зростає внаслідок дифузії.

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.