скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Альтернативные источники энергии

Для оценки относительной скорости ветра в метеорологической прак­тике используют коэффициент, %,

где - измеренная в определенный час скорость; v - средняя скорость за выбранный промежуток времени; vmax> vmin — экстремальные значе­ния скорости ветра за этот период.

Линии, соединяющие точки на карте, имеющие равные величины К', называются изоплетами.

Энергия Е воздушного потока с поперечным сечением F, Дж:

E = mv2/2.                                                                                      

Секундная масса т воздуха, протекающая со скоростью v через это сече­ние, кг/с:

m =pFv.                                                                                         

Подставляя E в m, получаем, Дж/с,

E = pv3F/2,                                                                                     

где р — плотность воздуха, равная для нормальных условий 1,23 кг/м3 (при t = 15 °С и р = 101,3 кПа или 760мм рт. ст.).

Таким образом, энергия ветра изменяется пропорционально кубу его скорости. Ветроколесо может преобразовать в полезную работу только часть этой энергии, которая оценивается коэффициентом использования энергии ветра £. Для идеального крыльчатого ветроколеса максимально достижимая величина £, рассчитанная по классической теории Н.Е. Жу­ковского и теории Г.Х. Сабинина, равна соответственно 0,593 и 0,687. Современные ветродвигатели при работе в номинальном (расчетном) режиме преобразуют в механическую работу не более 45 — 48% кинетической энергии ветрового потока, что вызвано различными потерями и другими причинами. Кинетическая энергия, которой потен­циально обладает ветровой поток, зависит от скорости ветра v, температуры воздуха t и атмосферного давления р. Удельная мощность (секунд­ная энергия), которая заключена в потоке, имеющем поперечное сечение, равное 1 м2, при t = +15°С и p= 101,3 кПа округленно составляет:

Скорость ветра, м/с.......     4        6        8         10      14        18      22

Мощность потока, кВт/м2   ...     0,04   0,13   0,31    0,61    1,67     3,6    6,25

По отношению к этим условиям изменение температуры воздуха от + 15 до 0 °С повышает мощность потока примерно на 6%, а при t = +30 °С энергия, заключенная в потоке, наоборот, снижается на 5%. При постоян­ной температуре воздуха 0°С изменение атмосферного давления, напри­мер, от 103,7 до 97,3 кПа (от 770 до 730 мм рт. ст.) снижает энергию по­тока примерно на 6%.

  §1.3ПРИНЦИПЫ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ ВЕТРА И РАБОТЫ ВЕТРОДВИГАТЕЛЯ

Воздушный поток, как и любое движущееся тело, обладает энергией движения, или запасом кинетической энергии. Последняя с помощью ветроколеса или другого рабочего органа преобразуется в механическую энергию. В зависимости от назначения ветроустановки механическая энер­гия с помощью исполнительных механизмов (генератора, компрессора, электролизера и т.д.) может быть преобразована в электрическую, тепло­вую или механическую энергию, а также в энергию сжатого воздуха. Согласно (3.7) — (3.9) секундная кинетическая энергия Е воздушного потока с площадью поперечного сечения F, имеющего массу т, плот-яость р и скорость v, равна pFv3/2. Замечая, что F - ПR2, и сделав соот­ветствующие подстановки, получим, Н*м/с,          

Рис1.1. Карусельный ветродвигатель-шторка

Рис   1. 2.   Модель карусельного ветродвигателя с поворачивающимися лопастями

1 -     вертикальная ось; 2 - горизонтальные планки; 3 - поворачивающиеся лопасти; 4 -ось лопасти

Следовательно, секундная энергия, или мощность воздушного потока, пропорциональна его плотности, плошали поперечного сечения и кубу скорости.

Часть полной энергии потока, воспринятой ветроколесом, которую вет­родвигатель преобразует в механическую энергию, оценивается коэффи­циентом использования энергии ветра

                                                                               

 который зависит от типа ветродвигателя и режима его работы.

Секундная работа или мощность, Н-м/с, развиваемая ветроколесом, оп­ределяется по формуле

Р= pv3F

Так как плотность воздуха очень мала (в 800 раз меньше плотности воды), то для получения относительно больших мощностей приходится применять ветродвигатели со значительной поверхностью ветроколеса. Постоянные изменения скорости v приводят к тому, что мощность, раз­виваемая двигателем, изменяется в очень больших пределах: от нуля во время штиля до величины, в десятки раз превосходящей установленную мощность, на которую рассчитывают ветродвигатель при расчетной ско­рости ветра. Для преобразования кинетической энергии воздушного потока в меха­ническую энергию могут быть использованы ветродвигатели различных типов. Первыми (примерно в XVIII в. до н.э.) появились, по-видимому в Персии и Китае, двигатели с вертикальной осью вращения, как наиболее простые. Они получили название карусельных. Чтобы получить вращаю­щий момент на оси, лопасти, движущиеся навстречу ветру, должны быть прикрыты шторкой (рис. 4.3) или поворачиваться ребром к потоку (рис. 4.4). Для этого они укрепляются на оси с помощью шарниров и на активном участке пути (в зоне А) фиксируются в нужном положении специальными устройствами (упорами).

Рис. 1.3. Роторный ветродвигатель

Рис. 1.4.  Барабанный ветродвигатель

Разновидностью двигателей карусельного типа являются роторные двигатели, у которых рабочие поверхности выполнены не плоскими, а криволинейными (рис. 4.5). Поэтому давление на них при движении по направлению действия потока и против него разное, что и обусловлива­ет возникновение вращающего момента. Двигатели с плоскими рабочи­ми поверхностями, вращающимися относительно горизонтальной оси, получили название барабанных (рис. 4.6).

Все перечисленные типы двигателей работают в результате наличия разности сил лобового давления, образуемых относительно оси враще­ния. При этом нетрудно показать, что наибольшую мощность двигатель развивает в том случае, когда рабочая плоскость, воспринимающая давле­ние ветра, движется по направлению потока со скоростью, примерно рав­ной 1/3 его скорости. Большинство из указанных типов двигателей имеет весьма простую конструкцию, но тем не менее они не нашли широкого распространения из-за своей тихоходности, громоздкости, малого значе­ния коэффициента использования энергии ветра ij (в лучших условиях он не превышает 0,18), больших трудностей, возникающих при необходи­мости оборудования их системами автоматического регулирования разви­ваемой мощности и частоты вращения.

В последние годы в ряде зарубежных стран (США, Канаде, Аргентине, Великобритании и др.) большое внимание привлекли к себе ветродвига­тели с вертикальной осью вращения, предложенные в 30-х годах фран­цузским изобретателем Дарье. Этот ветродвигатель (рис. 4.7) отличает­ся тем, что его ветроприемное устройство — ротор состоит из двух-четы­рех изогнутых лопастей, имеющих в поперечном сечении аэродинамичес­кий профиль. Лопасти, закрепленные в точках А и Б на оси вращения, изогнуты так, что образуют пространственную конструкцию, вращаю­щуюся под действием подъемной силы, возникающей на лопастях от ветрового потока. Это позволяет повысить величину £ до 0,3—0,32. Пре­имуществами такого ветродвигателя являются его меньший относитель­ный вес на единицу мощности, чем у других типов двигателей с верти-

риc. 1.5. Ветродвигатель (ротор) системы Дарье:

1 -     лопасти; 2 - вал; 3 - растяжки; 4 - опора; 5 - привод

кальной осью вращения, большая быстроходность. Кроме того, в отли­чие от двигателей с горизонтальной осью система Дарье не нуждается в механизме ориентации по направлению ветрового потока.

Более совершенными двигателями являются так называемые крыль-чатые ветродвигатели с горизонтальной осью вращения ветроколеса, ра­бочий момент на котором создается за счет аэродинамических сил, воз­никающих на лопастях, которые в простейших конструкциях представ­ляют собой плоскости. В современных агрегатах применяют лопасти, имеющие специальный аэродинамический профиль. Они появились при­мерно в IV—III в. до н. э. в Александрии [321.

Рис. 1.6. Принципиальная схема ветродвигателя крыльчатого типа с горизонтальной осью вращения:

/ - редуктор; 2 - генератор; 3 - вертикальный вал

Рис. 1.7. Принцип работы ветроколеса:

а - подъемная сила крыла Ру; б - план скоростей воздушного потока и сил, действующих на лопасть

Такие ветродвигатели более быстроходные, имеют меньшую относительную массу, снабжены устройствами, автоматически регулирующими развиваемую мощность, ограничивающими частоту вращения и ориентирующими ось вращения ветроколеса по направлению вектора скорости потока. Коэф­фициент использования энергии ветра у них примерно в 3 раза выше, чем у двигателей карусельного, роторного и барабанного типов.

В большинстве стран производят и применяют только крыльчатые вет­родвигатели. Двигатели других типов изготовляют обычно кустарным пу­тем или производят в очень небольших количествах. Поэтому в дальней­шем мы будем рассматривать только агрегаты и установки с двигателями крыльчатого типа. Основным рабочим органом такого двигателя являет­ся ветроколесо с лопастями, расположенными по радиусам и под некото­рым углом tp к плоскости вращения. Число лопастей может быть различ­ным и зависит от назначения двигателя. При обтекании воздушным пото­ком крыла под ним создается зона повышенного давления, а над ним, напротив, пониженного. Это обусловливает возникновение подъемной силы Pv, которая создает вращающий момент на ветроколесе

Электрические зарядные ветроагрегаты, предназначенные для зарядки аккумуляторов с целью освещения жилищ чабанов, полевых станов, юрт оленеводов, палаток и домиков различных экспедиций, а также для пита­ния сигнальных устройств, радиоузлов, приемников и телевизоров, обыч­но имеют мощность 1 кВт и используются в неэлектрифицированных, удаленных от линий электропередачи и малонаселенных районах, где vv > 3,5 м/с. Агрегаты мощностью от 50 Вт до 1,5 кВт применяют также в качестве энергоустановок для питания устройств катодной защиты ма­гистральных нефте- и' газопроводов, морских эстакад, питания автома­тических метеостанций и опреснительных установок индивидуального пользования. Агрегаты снабжены аккумуляторными батареями низкого напряжения (6—24 В), которые работают в буферном режиме.

Агрегат АВЭУ-2 (прежняя марка — АВЭС-0,1) имеет следующие узлы (рис. 5.26): ветроколесо 1 диаметром 2 м, головка 2, хвост 3, стойка 4 и электрический щиток с аккумуляторной батареей. Стойка головки при­креплена к опорному столбу 5 и растяжками 6, на котором укреплен ры­чаг ручного управления, с помощью которого, тормозя вал генератора, останавливают агрегат.

Ветроколесо имеет две металлические лопасти, поворачивающиеся в подшипниках втулки, закрепленной- на валу генератора. Центробежный регулятор работает по такому же принципу, как 'и агрегат «Беркут». В зависимости от скорости ветра и величины нагрузки частота вращения изменяется в диапазоне от 300  до 800 об/мин.

На стойке, несущей ферму с хвостовым оперением, закреплен генера­тор с возбуждением от постоянных магнитов. В нем расположены трех­фазная неподвижная статорная обмотка и ротор в виде восьмиполюсного постоянного магнита. Они размещены в корпусе из алюминиевого сплава. В зависимости от способа соединения обмоток генератор вырабатывает ток напряжением 26 или 15 В.

Генератор соединен с электрическим щитком трехжильным кабелем, пропущенным сквозь трубу стойки, которая может поворачиваться в

Скорость ветра, м/с

Показатели —--------------------------------

4        5         6          7    8 и выше

Мощность, кВт   0,8    1,6       4,5     7,8      12 Qnpи H#Ј=50M-     5,9      11,3   14,1     16

Q при H #2 = 100 м -      4,6       9,7    12         15

Таблица 1

Полезная мощность и подача агрегата «Сокол», м3/чупорном шарикоподшипнике и направляющей втулке. Щиток имеет один-два селеновых выпрямителя, собранных по трехфазной двухполу-периодной схеме, амперметр для контроля работы агрегата, выключатели, предохранитель и зажимы для присоединения нагрузки к аккумулятор­ной батарее (рис. 5.27). Транзисторный преобразователь используется для питания телевизора.

Рис.1.9. Электрическая схема агрегата АВЭУ-2:

/ - ветроэлектроагрегат; 2 — электрощит; 3 - преобразователь; 4 - телевизор; 5 - радиоприемник;  6 - аккумуляторные батареи;   7 - электрическое освещение

Рис. 1.10. Электрический агрегат Д-4 для зарядки аккумуляторных батарей

Для предохранения батарей от перезаряда и выкипания электролита предусмотрена релейная автоматика, которая подключа­ет к генератору дополнительную нагрузку при достижении напряжения аккумулятора 15 В и избытке мощности. Этим снижаются напряжение и ток заряда до 0,5 - 1 А.

Агрегат работает с аккумуляторными батареями 6СТ-128 или ЗСТ-84 напряжением 6,12 или 24 В.

Агрегат Д-4 представляет интерес как пример весьма прос­того по конструкции и устойчивого в работе устройства для получения электрической энергии. Он имеет ветроколесо с регулятором частоты вра­щения, редуктор, генератор, опору с хвостом, опорный столб с растяж­ками и рычагом механизма ручного пуска и останова, а также электри­ческий щиток. Простейший по конструкции редуктор и генератор постоян­ного тока мощностью 750 Вт составляют головку Колесо и ре­гулятор по принципу действия такие же, как у агрегата «Беркут».


ГЛАВА 2

ВИДЫ ЭНЕРГИИ МИРОВОГО  ОКЕАНА

§2.1ОСНОВНЫЕ НАПРАВЛЕНИЯ РАЗВИТИЯ ОКЕАНСКОЙ ЭНЕРГЕТИКИ

Резкое увеличение цен на топливо, трудности с его полу­чением, сообщения об истощении топливных ресурсов — все эти видимые признаки энергетического кризиса выз­вали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энер­гии Мирового океана.

Естественно, этот интерес особенно велик в странах, не обладающих достаточными собственными топливными ресурсами, т. е. запасами нефти, газа, угля и пр. Напри­мер, в Японии осуществляется национальная программа «Солнечный свет», которая предусматривает к 2000 г. покрытие более 70 % всего энергетического потребления страны за счет новых источников энергии, в том числе — за счет энергии океана. В Англии на исследования в этой области  было выделено 13 млн. фунтов стерлингов. Предполагается, что наилучший прин­цип преобразования энергии волн ляжет в основу буду­щих мощных волновых электростанций, способных обес­печить значительную часть (до 30 %) потребности этой страны в электроэнергии. В Норвегии реализуется про­грамма по использованию энергии морских волн; па ис­следования в этой области израсходовано 10 млн. крон. Ведется строительство двух опытных волновых электро­станций, каждая из них будет ежегодно производить около 1,5 млн. кВт-ч электроэнергии предположительной сто­имостью не более 0,6 крон за 1 кВт-ч.

В разных видах аккумулирует энергию Мировой океан. Вопрос состоит в том, чтобы найти оптимальные способы  ее использования.

По оценкам разных авторов, доступная часть энергии Мирового океана, т. е. та часть, которая может быть практически использована при современном уровне тех­ники преобразования, во много раз превышает уровень современного потребления энергии в мире, который определяется цифрой около 3-1020 Дж в год (44,8 % от этой цифры покрываются нефтью; 32,4 — углем; 20 — газом; 2,8 % энергией,   вырабатываемой   гидро-  и  атомными станциями). Больше всего в океане тепловой энергии, по­скольку океан — гигантский тепловой аккумулятор энер­гии Солнца.

Страницы: 1, 2, 3, 4, 5, 6


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.